Supercapacitors combine efficient electrical energy storage and performance stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central element of existing and emerging energy concepts. A better understanding of capacitance enhancement options is essential to exploit the full potential of supercapacitors. Here, we report a novel hierarchically structured N-doped carbon material and a significant capacitance enhancement for a specific ionic liquid. Our studies indicate that matching of the electrode material and the ionic liquid specifically leads to a constant normalized resistance of the electrode material (voltage window up to AE1 V vs. carbon) and a significant enhancement of the specific capacitance. Such effects are not seen for standard organic electrolytes, non-matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material improves the symmetric full cell capacitance of the match and considerably increases its long-term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for N-doped carbons with matched ionic liquid may enable a new platform for developing supercapacitors with enhanced energy storage capacity.
The synthesis of aromatic amines from nitroarenes through hydrogenation is an industrially and academically important reaction. In addition, the employment of base metal catalysts in reactions that are preferentially mediated by rare noble metals is a desirable aim in catalysis and an attractive element‐conservation strategy. Especially appealing is the observation of novel selectivity patterns with such inexpensive metal catalysts. Herein, we report a novel mesostructured Ni nanocomposite catalyst. It is the first example of a reusable Ni catalyst that is able to hydrogenate nitroarenes selectively to anilines in the presence of highly sensitive functional groups such as C=C bonds and nitrile, aldehyde, and iodo substituents.
The synthesis, characterization, and catalytic studies of platinum (Pt) nanoparticles (NPs) supported by a polymer-derived SiCN matrix are reported. In the first step and under mild conditions (110 °C), a block copolymer (BCP) based on hydroxyl-group-terminated linear polyethylene (PEOH) and a commercially available polysilazane (PSZ: HTT 1800) were synthesized. Afterwards, the BCP was microphase separated, modified with an aminopyridinato (Ap) ligand-stabilized Pt complex, and cross-linked. The green bodies thus obtained were pyrolyzed at 1000 °C under nitrogen and provided porous Pt@SiCN nanocomposite via decomposition of the PEOH block while Pt nanoparticles grew in situ within the SiCN matrix. Powder X-ray diffraction (PXRD) studies confirmed the presence of the cubic Pt phase in the amorphous SiCN matrix whereas transmission electron microscopy (TEM) measurements revealed homogeneously distributed Pt nanoparticles in the size of 0.9 to 1.9 nm. N sorption studies indicated the presence of micro- and mesopores. Pt@SiCN appears to be an active and robust catalyst in the hydrolysis of sodium borohydride under harsh conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.