Small noncoding RNAs function in concert with Argonaute (Ago) proteins to regulate gene expression at the level of transcription, mRNA stability, or translation. Ago proteins bind small RNAs and form the core of silencing complexes. Here, we report the analysis of small RNAs associated with human Ago1 and Ago2 revealed by immunoprecipitation and deep sequencing. Among the reads, we find small RNAs originating from the small nucleolar RNA (snoRNA) ACA45. Moreover, processing of ACA45 requires Dicer activity but is independent of Drosha/DGCR8. Using bioinformatic prediction algorithms and luciferase reporter assays, we uncover the mediator subunit CDC2L6 as one potential mRNA target of ACA45 small RNAs, suggesting a role for ACA45-processing products in posttranscriptional gene silencing. We further identify a number of human snoRNAs with microRNA (miRNA)-like processing signatures. We have, therefore, identified a class of small RNAs in human cells that originate from snoRNAs and can function like miRNAs.
Deep sequencing studies frequently identify small RNA fragments of abundant RNAs. These fragments are thought to represent degradation products of their precursors. Using sequencing, computational analysis, and sensitive northern blot assays, we show that constitutively expressed non-coding RNAs such as tRNAs, snoRNAs, rRNAs and snRNAs preferentially produce small 5′ and 3′ end fragments. Similar to that of microRNA processing, these terminal fragments are generated in an asymmetric manner that predominantly favors either the 5′ or 3′ end. Terminal-specific and asymmetric processing of these small RNAs occurs in both mouse and human cells. In addition to the known processing of some 3′ terminal tRNA-derived fragments (tRFs) by the RNase III endonuclease Dicer, we show that several RNase family members can produce tRFs, including Angiogenin that cleaves the TψC loop to generate 3′ tRFs. The 3′ terminal tRFs but not the 5′ tRFs are highly complementary to human endogenous retroviral sequences in the genome. Despite their independence from Dicer processing, these tRFs associate with Ago2 and are capable of down regulating target genes by transcript cleavage in vitro . We suggest that endogenous 3′ tRFs have a role in regulating the unwarranted expression of endogenous viruses through the RNA interference pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.