Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.
MicroRNAs (miRNAs) are endogenously expressed 20 -24 nucleotide RNAs thought to repress protein translation through binding to a target mRNA (1-3). Only a few of the more than 250 predicted human miRNAs have been assigned any biological function. In an effort to uncover miRNAs important during adipocyte differentiation, antisense oligonucleotides (ASOs) targeting 86 human miRNAs were transfected into cultured human pre-adipocytes, and their ability to modulate adipocyte differentiation was evaluated. Expression of 254 miRNAs in differentiating adipocytes was also examined on a miRNA microarray. Here we report that the combination of expression data and functional assay results identified a role for miR-143 in adipocyte differentiation. miR-143 levels increased in differentiating adipocytes, and inhibition of miR-143 effectively inhibited adipocyte differentiation. In addition, protein levels of the proposed miR-143 target ERK5 (4) were higher in ASO-treated adipocytes. These results demonstrate that miR-143 is involved in adipocyte differentiation and may act through target gene ERK5.The first miRNA 1 was identified in Caenorhabditis elegans as a gene important for timing of larval development (5). miRNAs have since been implicated in many processes in invertebrates, including cell proliferation and apoptosis (6, 7), fat metabolism (6), and neuronal patterning (8). As many miRNAs are conserved across species (9 -11), they are likely to be involved in developmental processes in all animals. Only a few mammalian miRNAs have been assigned any function, and at least two of these are involved in developmental processes: miR-181 promotes B cell development in mice (12) and miR196a regulates several Hox genes (13), which code for a family of transcription factors involved in various developmental programs in animals (14).We hypothesized that miRNAs may play a role in maturation of human adipocytes. Understanding the molecular events involved in adipocyte differentiation is of interest for development of therapeutics for metabolic diseases such as obesity and diabetes. In vitro cell culture systems, such as human primary subcutaneous pre-adipocytes, have been crucial in uncovering signaling pathways important for adipocyte differentiation (15). These cells can be cultured with differentiation-promoting hormonal stimuli, causing them to develop into cells that morphologically and functionally resemble mature adipocytes. In this study we have inhibited a panel of miRNAs in pre-adipocytes using antisense oligonucleotides and evaluated the effect on adipocyte differentiation. Combined with expression analysis of miRNAs in differentiating adipocytes by microarray, one miRNA, miR-143, was identified which normally promotes adipocyte differentiation. These results indicate that miRNAs do play a role in adipocyte differentiation and are potential therapeutic targets for obesity and metabolic diseases. EXPERIMENTAL PROCEDURESOligonucleotide Synthesis-Oligonucleotides were prepared using conventional phosphoramidite chemistry and...
Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for "physiological" modulation of multiple proteins whose expression is deregulated in cancer.Malignant gliomas are brain tumors of glial origin. They are the most common type of primary brain tumors in adults and persist as serious clinical and scientific problems (reviewed in reference 40). Survival depends heavily on the histological grade of the tumor, but patients afflicted with the most malignant glioma, glioblastoma (GBM), survive on average less than 1 year. Current therapies for GBM, though they are very aggressive and usually include surgery, radiotherapy, and chemotherapy, have not been successful, due to several factors. These include rapidness and invasiveness of tumor growth, the genetic heterogeneity of the tumors, and our poor understanding of the molecular mechanisms governing disease manifestation and progression (40).MicroRNAs (miRNAs) are small regulatory RNA molecules that in recent years have been identified in the progression of various cancers and proposed as novel targets for anticancer therapies (reviewed in references 9 and 13). By negatively regulating their mRNA targets to either degradation or translational repression, they can act as both tumor suppressors and oncogenes (19,27,41,43). Using highthroughput profiling of miRNA expression, we have previously identified a specific miRNA, miRNA 21 (miR-21), as most strongly elevated in nearly all analyzed human GBM specimens (5). Other groups demonstrated overexpression of this miRNA in a wide range of other cancers, including breast, lung, colon, prostate, pancreas, ovarian, and stomach cancers, as well as in chronic lymphocytic leukemia (33, 54). These combined findings suggest miR-21 as a possible oncogene acting in a variety of cancers. miR-21 has been identified in controlling apoptosis, cell proliferation, and migration of cell lines in breast, colorectal, and other cancers (1,44,51,59).Our ai...
Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr -/-mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33-treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease.
Cardiovascular disease (CVD) remains the leading cause of mortality in westernized countries, despite optimum medical therapy to lower LDL cholesterol. The pursuit of novel therapies to target this residual risk has focused on raising levels of HDL cholesterol in order to exploit its atheroprotective effects1. MicroRNAs have emerged as important post-transcriptional regulators of lipid metabolism, and are thus a new class of targets for therapeutic intervention2. MicroRNA-33a and b (miR-33a/b) are intronic microRNAs embedded in the sterol response element binding protein genes SREBF2 and SREBF13–5, respectively, that repress expression of the cholesterol transporter ABCA1, a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL3–5 and protecting from atherosclerosis6, however extrapolation of these findings to humans is complicated by the fact that mice lack miR-33b which is present only in the SREBF1 gene of higher mammals. Here we show in African green monkeys that systemic delivery of an anti-miR oligonucleotide that targets both miR-33a and miR-33b increases hepatic expression of ABCA1 and induces a sustained increase in plasma HDL over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in the oxidation of fatty acids (CROT, CPT1A, HADHB, PRKAA1) and reduced genes involved in fatty acid synthesis (SREBF1, FASN, ACLY, ACACA), resulting in a marked suppression of plasma VLDL triglyceride levels, a finding not previously observed in mice. These data establish, in a model highly relevant to humans, that pharmacological inhibition of miR-33a and b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglycerides for the treatment of dyslipidemias that increase cardiovascular disease risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.