We report the preclinical characterization of two engineered botulinum neurotoxin serotype B proteins with significant therapeutic potential.
Botulinum neurotoxin (BoNT) is a major therapeutic agent. Of seven native BoNT serotypes (A to G), only A and B are currently used in the clinic. Here we compared the potency of commercially available purified native serotypes A1 to F1 across in vitro, ex vivo, and in vivo assays. BoNT potency in vitro was assessed in rat primary cells (target protein cleavage and neurotransmitter release assays) in supraspinal, spinal, and sensory systems. BoNT potency ex vivo was measured in the mouse phrenic nerve hemidiaphragm (PNHD) assay, measuring muscle contractility. In vivo, BoNT‐induced muscle relaxation in mice and rats was assessed in the Digit Abduction Score (DAS) test, while effects on body weight (BW) gain were used to assess tolerability. In all assays, all BoNT serotypes were potent toxins, except serotype D1 in vivo which failed to produce significant muscle flaccidity in mice and rats. In rats, all serotypes were well‐tolerated, whereas in mice, reductions in BW were detected at high doses. Serotype A1 was the most potent serotype across in vitro, ex vivo, and in vivo assays. The rank order of potency of the serotypes revealed differences among assays. For example, species‐specificity was seen for serotype B1, and to a lesser extent for serotype C1. Serotypes F1 and C1, not currently in the clinic, showed preference for sensory over motor models and therefore could be considered for development in conditions involving the somatosensory system.
Clinically used botulinum neurotoxins (BoNTs) are natural products of Clostridium botulinum. A novel, recombinant BoNT type A1 (rBoNT/A1; IPN10260) has been synthesized using the native amino acid sequence expressed in Escherichia coli and has previously been characterized in vitro and ex vivo. Here, we aimed to characterize rBoNT/A1 in vivo and evaluate its effects on skeletal muscle. The properties of rBoNT/A1 following single, intramuscular administration were evaluated in the mouse and rat digit abduction score (DAS) assays and compared with those of natural BoNT/A1 (nBoNT/A1). rBoNT/A1‐injected tibialis anterior was assessed in the in situ muscle force test in rats. rBoNT/A1‐injected gastrocnemius lateralis (GL) muscle was assessed in the compound muscle action potential (CMAP) test in rats. The rBoNT/A1‐injected GL muscle was evaluated for muscle weight, volume, myofiber composition and immunohistochemical detection of cleaved SNAP25 (c‐SNAP25). Results showed that rBoNT/A1 and nBoNT/A1 were equipotent and had similar onset and duration of action in both mouse and rat DAS assays. rBoNT/A1 caused a dose‐dependent inhibition of muscle force and a rapid long‐lasting reduction in CMAP amplitude that lasted for at least 30 days. Dose‐dependent reductions in GL weight and volume and increases in myofiber atrophy were accompanied by immunohistochemical detection of c‐SNAP25. Overall, rBoNT/A1 and nBoNT/A1 exhibited similar properties following intramuscular administration. rBoNT/A1 inhibited motoneurons neurotransmitter release, which was robust, long‐lasting, and accompanied by cleavage of SNAP25. rBoNT/A1 is a useful tool molecule for comparison with current natural and future modified recombinant neurotoxins products.
Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli–one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3–4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.