Because of its high affinity for D(2)/D(3) receptors and its long elimination half-life, aripiprazole at clinical doses occupies a high fraction of its target receptor everywhere in the brain. Its dissociation from those receptors is very slow, such that the authors calculate from the results that in patients with serum aripiprazole concentrations in the range typical for clinical practice, D(2)/D(3) receptors must remain nearly saturated for as long as 1 week after the last dose.
To elucidate the "atypicality" of ziprasidone, its striatal and extrastriatal D2/D3-receptor binding was characterized in patients with schizophrenia under steady-state conditions. These data were compared with striatal receptor occupancy values after single-dose ziprasidone ingestion in healthy controls. [F]fallypride positron emission tomography (PET) recordings were obtained in 15 patients under steady-state ziprasidone treatment at varying time points after the last dose. Binding potentials were calculated for striatal and extrastriatal regions. D2/D3-receptor occupancies were expressed relative to binding potentials in 8 unmedicated patients. In a parallel [C]raclopride-PET study, striatal D2/D3-receptor occupancy was measured in healthy subjects after single oral doses of 40 mg ziprasidone or 7.5 mg haloperidol. Ziprasidone plasma concentrations correlated significantly with D2/D3-receptor occupancies in all volumes of interests. Occupancy in extrastriatal regions was approximately 10% higher than in striatal regions. Half maximal effective concentration values were consistently higher in striatal than in extrastriatal regions (temporal cortex: 39 ng/mL; putamen: 64 ng/mL), irrespective of the time between last dosing and scan. Single ziprasidone doses resulted in higher occupancies exceeding the 95% prediction limits of the occupancy versus plasma concentrations for chronic dosing. Ziprasidone shares moderate preferential extrastriatal D2/D3-receptor binding with some other atypicals. D2/D3-receptor occupancy is rapidly attuning to the daily course of ziprasidone plasma levels, suggesting relatively high intraday variations of D2/D3-receptor binding. The discrepancies between single-dose and steady-state results are important for the future design of dose-finding PET occupancy studies of novel antipsychotics. Single-dose studies may not be totally relied on for final dose selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.