Laser photocoagulation of limbal and episcleral veins induces transient ocular hypertension in albino CD-1 mice. The ensuing retinal and optic nerve pathologic events recapitulated key features of glaucoma and placed ONH RGC axon responses as an early manifestation of damage. LIOH in albino mice may be useful as a mouse model to examine mechanisms of RGC and axon glaucomatous injury.
Purpose We explored the diagnostic use of circulating tumor cells in patients with neoadjuvant bladder cancer using enumeration and next generation sequencing. Materials and Methods A total of 20 patients with bladder cancer who were eligible for cisplatin based neoadjuvant chemotherapy were enrolled in an institutional review board approved study. Subjects underwent blood draws at baseline and after 1 cycle of chemotherapy. A total of 11 patients with metastatic bladder cancer and 13 healthy donors were analyzed for comparison. Samples were enriched for circulating tumor cells using the novel IsoFlux™ System microfluidic collection device. Circulating tumor cell counts were analyzed for repeatability and compared with Food and Drug Administration cleared circulating tumor cells. Circulating tumor cells were also analyzed for mutational status using next generation sequencing. Results Median circulating tumor cell counts were 13 at baseline and 5 at followup in the neoadjuvant group, 29 in the metastatic group and 2 in the healthy group. The concordance of circulating tumor cell levels, defined as low—fewer than 10, medium—11 to 30 and high—greater than 30, across replicate tubes was 100% in 15 preparations. In matched samples the IsoFlux test showed 10 or more circulating tumor cells in 4 of 9 samples (44%) while CellSearch® showed 0 of 9 (0%). At cystectomy 4 months after baseline all 3 patients (100%) with medium/high circulating tumor cell levels at baseline and followup had unfavorable pathological stage disease (T1-T4 or N+). Next generation sequencing analysis showed somatic variant detection in 4 of 8 patients using a targeted cancer panel. All 8 cases (100%) had a medium/high circulating tumor cell level with a circulating tumor cell fraction of greater than 5% purity. Conclusions This study demonstrates a potential role for circulating tumor cell assays in the management of bladder cancer. The IsoFlux method of circulating tumor cell detection shows increased sensitivity compared with CellSearch. A next generation sequencing assay is presented with sufficient sensitivity to detect genomic alterations in circulating tumor cells.
Alterations of abiotic factors due to global climate change are predicted to impact disease dynamics, particularly for pathogens with complex life cycles involving free-living infectious stages, such as the cercariae of trematode parasites. Previous investigations of cercarial output, longevity, and infectivity suggest an overall increase in trematode transmission in response to elevated temperature. However, while increased temperature will likely be accompanied by changes in salinity and pH in marine ecosystems, little is known regarding their influence on cercariae. We investigated the response of trematode cercariae of the intertidal horn snail Cerithidea californica to altered temperature, salinity, and pH. The survival and activity of one trematode species, Euhaplorchis californiensis (Heterophydae), appears to be largely unaffected by increased temperature, while that of a second species, Acanthoparyphium spinulosum (Echinostomatidae), decreased at the warmer temperature (25 degrees C). Cercariae of E. californiensis generally fared best at the highest salinity (40 ppt), whereas A. spinulosum showed the opposite effect. Neither species was affected by pH alone although there were interactions with salinity and time. These results may reflect different emergence patterns of the two species and demonstrate that trematode parasitism in intertidal zones may be impacted by alterations of the marine environment resulting from climate change.
Many tumor cells exhibit aberrant gap junctional intercellular communication, which can be restored by transfection with connexin genes. We have previously discovered that overexpression of connexin43 (Cx43) in C6 glioma cells not only reduces proliferation but also leads to production of soluble growth-inhibitory factors. We identified that several members of the CCN (Cyr61/ connective tissue growth factor/nephroblastoma-overexpressed) family are up-regulated following Cx43 expression, including CCN3 (NOV). We now report evidence for an association between CCN3 and Cx43. Western blot analysis demonstrated that the 48-kDa fulllength CCN3 protein was present in the lysate and conditioned medium of growth-suppressed C6-Cx43 cells, as well as primary astrocytes, but not in C6 parental and human glioma cells. Immunocytochemical examination of CCN3 revealed diffuse localization in parental C6 cells, whereas transfection of C6 cells with Cx43 (C6-Cx43) or with a modified Cx43 tagged to green fluorescent protein on its C terminus (Cx43-GFP) resulted in punctate staining, suggesting that CCN3 co-localizes with Cx43 in plaques at the plasma membrane. In cells expressing a C-terminal truncation of Cx43 (Cx43⌬244 -382), this co-localization was lost. Glutathione S-transferase pull-down assay and co-immunoprecipitation demonstrated that CCN3 was able to physically interact with Cx43. In contrast, CCN3 was not found to associate with Cx43⌬244 -382. Similar experiments revealed that CCN3 did not co-localize or associate with other connexins, including Cx40 or Cx32. Taken together, these data support an interaction of CCN3 with the C terminus of Cx43, which could play an important role in mediating growth control induced by specific gap junction proteins.
The expression of EphB2 and ephrin-B2 is upregulated at the ONH of glaucomatous DBA/2J mice coinciding with RGC axon loss. The direct binding of EphB2 and ephrin-B2 on adult RGC axons at the ONH and the ability of EphB2 to elevate intra-axonal calcium indicate that these proteins may affect RGC axon physiology in the setting of glaucoma and thus affect the development or progression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.