Grasping and manipulating uncooperative objects in space is an emerging challenge for robotic systems. Many traditional robotic grasping techniques used on Earth are infeasible in space. Vacuum grippers require an atmosphere, sticky attachments fail in the harsh environment of space, and handlike opposed grippers are not suited for large, smooth space debris. We present a robotic gripper that can gently grasp, manipulate, and release both flat and curved uncooperative objects as large as a meter in diameter while in microgravity. This is enabled by (i) space-qualified gecko-inspired dry adhesives that are selectively turned on and off by the application of shear forces, (ii) a load-sharing system that scales small patches of these adhesives to large areas, and (iii) a nonlinear passive wrist that is stiff during manipulation yet compliant when overloaded. We also introduce and experimentally verify a model for determining the force and moment limits of such an adhesive system. Tests in microgravity show that robotic grippers based on dry adhesion are a viable option for eliminating space debris in low Earth orbit and for enhancing missions in space.
A prototype rover carrying an astrobiology payload was developed and deployed at analog field sites to mature generalized system architectures capable of searching for biosignatures in extreme terrain across the Solar System. Specifically, the four-legged Limbed Excursion Mechanical Utility Robot (LEMUR) 3 climbing robot with microspine grippers carried three instruments: A micro-X-ray fluorescence instrument based on the Mars 2020 mission's Planetary Instrument for X-ray Lithochemistry provided elemental chemistry; a deep-ultraviolet fluorescence instrument based in Mars 2020s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals mapped organics in bacterial communities on opaque substrates; and a nearinfrared acousto-optic tunable filter-based point spectrometer identified minerals and organics in the 1.6-3.6 mm range. The rover also carried a light detection and ranging and a color camera for both science and navigation. Combined, this payload detects astrobiologically important classes of rock components (elements, minerals, and organics) in extreme terrain, which, as demonstrated in this work, can reveal a correlation between textural biosignatures and the organics or elements expected to preserve them in a habitable environment. Across >10 field tests, milestones were achieved in instrument operations, autonomous mobility in extreme terrain, and system integration that can inform future planetary science mission architectures. Contributions include (1) system-level demonstration of mock missions to the vertical exposures of Mars lava tube caves and Mars canyon walls, (2) demonstration of multi-instrument integration into a confocal arrangement with surface scanning capabilities, and (3) demonstration of automated focus stacking algorithms for improved signal-tonoise ratios and reduced operation time.
Abstract. An architecture and conceptual design for a robotically assembled, modular space telescope (RAMST) that enables extremely large space telescopes to be conceived is presented. The distinguishing features of the RAMST architecture compared with prior concepts include the use of a modular deployable structure, a general-purpose robot, and advanced metrology, with the option of formation flying. To demonstrate the feasibility of the robotic assembly concept, we present a reference design using the RAMST architecture for a formation flying 100-m telescope that is assembled in Earth orbit and operated at the Sun-Earth Lagrange Point 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.