Defects in NK and NKT cell activities have been implicated in the etiology of type 1 (autoimmune) diabetes in NOD mice on the basis of experiments performed using surrogate phenotypes for the identification of these lymphocyte subsets. Here, we have generated a congenic line of NOD mice (NOD.b-Nkrp1(b)) which express the allelic NK1.1 marker, enabling the direct study of NK and NKT cells in NOD mice. Major deficiencies in both populations were identified when NOD.b-Nkrp1(b) mice were compared with C57BL/6 and BALB.B6-Cmv1(r) mice by flow cytometry. The decrease in numbers of peripheral NK cells was associated with an increase in their numbers in the bone marrow, suggesting that a defect in NK cell export may be involved. In contrast, the most severe deficiency of NKT cells found was in the thymus, indicating that defects in thymic production were probably responsible. The deficiencies in NK cell activity in NOD mice could only partly be accounted for by the reduced numbers of NK cells, and fewer NKT cells from NOD mice produced IL-4 following stimulation, suggesting that NK and NKT cells from NOD mice shared functional deficiencies in addition to their numerical deficiencies. Despite the relative lack of IL-4 production by NOD NKT cells, adoptive transfer of alpha beta TCR(+)NK1.1(+) syngeneic NKT cells into 3-week-old NOD recipients successfully prevented the onset of spontaneous diabetes. As both NK and NKT cells play roles in regulating immune responses, we postulate that the synergistic defects reported here contribute to the susceptibility of NOD mice to autoimmune disease.
SUMMARYSystemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by the production of antibodies directed against self antigens. Immune complex glomerulonephritis (GN) is one of the most serious complications of this disorder and can lead to potentially fatal renal failure. The aetiology of SLE is complex and multifactorial, characterized by interacting environmental and genetic factors. Here we examine the nature of the renal pathology in mycobacteriatreated non-obese diabetic (NOD) mice, in order to assess its suitability as a model for studying the aetiopathogenesis of, and possible treatment options for, lupus nephritis (LN) in humans. Both global and segmental proliferative lesions, characterized by increased mesangial matrix and cellularity, were demonstrated on light microscopy, and lesions varied in severity from very mild mesangiopathic GN through to obliteration of capillary lumina and glomerular sclerosis. Mixed isotype immune complexes (IC) consisting of immunoglobulin G (IgG), IgM, IgA and complement C3c were detected using direct immunofluorescence. They were deposited in multiple sites within the glomeruli, as confirmed by electron microscopy. The GN seen in mycobacteria-treated NOD mice therefore strongly resembles the pathology seen in human LN, including mesangiopathic, mesangiocapillary and membranous subclasses of LN. The development of spontaneous mixed isotype IC in the glomeruli of some senescent NOD mice suggests that mycobacterial exposure is accelerating, rather than inducing, the development of GN in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.