Abstract:Catchment hydrology has become replete with flow pathway characterizations obtained via combinations of physical hydrologic measurements (e.g. streamflow hydrographs) and natural tracer signals (e.g. stable water isotopes and geochemistry). In this study, we explored how our understanding of hydrologic flow pathways can be improved and expanded in both space and time by the simultaneous application of engineered synthetic DNA tracers. In this study, we compared the advective-dispersive transport properties and mass recovery rates of two types of synthetic DNA tracers, one consisting of synthetic DNA strands encapsulated into biodegradable microspheres and another consisting of 'free' DNA, i.e. not encapsulated. The DNA tracers were also compared with a conservative fluorescent dye. All tracers were injected into a small (3.2-km 2 ) valley glacier, Storglaciären, in northern Sweden. Seven of the nine DNA tracers showed clear recovery during the sampling period and similar peak arrival times and dispersion coefficients as the conservative fluorescent dye. However, recovered DNA tracer mass ranged only from 1% to 66%, while recovered fluorescent dye mass was 99%. Resulting from the cold and opaque subglacial environment provided by the glacier, mass loss associated with microbial activity and photochemical degradation of the DNA is likely negligible, leaving sorption of DNA tracers onto suspended particles and loss of microtracer particles to sediment storage as probable explanations. Despite the difference in mass recovery, the advection and dispersion information derived from the DNA tracer breakthrough curves provided spatially explicit information that allowed inferring a theoretical model of the flow pathways that water takes through the glacier.
Antimicrobial resistance is a growing public health threat driven by antimicrobial use-both judicious and injudicious-in people and animals. In animal agriculture, antimicrobials are used to treat, control, and prevent disease in herds of animals. While such use generally occurs under the broad supervision of a veterinarian, individual animals are often treated by farm owners or managers. The decision to administer antimicrobials is therefore influenced not only by the clinical situation but also by the motivations and priorities of different individual actors. Many studies have examined the drivers of external forces such as costs, workload and time constraints, or social pressures on antimicrobial use by veterinarians and producers, but none have explored the role of individually held values in influencing decision-making related to antimicrobial use. Values are deeply held normative orientations that guide the formation of attitudes and behaviors across multiple contexts. Values have been shown to be strongly tied to perceptions of and attitudes toward polarizing topics such as climate change, and preliminary evidence suggests that values are also associated with attitudes to antimicrobial resistance and stewardship. In this article, we draw on lessons learned in other fields (human health care, climate change science) to explore how values could be tied to the extrinsic and intrinsic factors that drive antimicrobial use and prescribing in animal agriculture. We also provide suggestions for ways to build a bridge between the veterinary and social sciences and incorporate values into future research aimed at promoting antimicrobial stewardship in animal agriculture.
Many nutrient mitigation best management practices (BMP) are promoted by state and federal agencies to protect water quality from animal agriculture. The measured effectiveness of these is highly variable in the research literature. Here, we establish pre-and post-BMP monitoring to evaluate the effectiveness of fencing out cattle from the riparian zone on water quality, specifically, phosphorus (P) loads and concentrations. We collected water samples year-round both before and after a cattle exclusion was established at a small mixed dairy and beef cattle pasture where cattle have historically grazed with unrestricted access to first and second order streams, and analyzed for soluble reactive and total P. Immediately after fence construction, we observed a significant reduction in total P in the stream but not in soluble reactive P. We also observed the development of new runoff source areas and short-circuiting of the riparian buffer as well as repeated presence of cows in the fenced-out area, all of which may diminish the potential effectiveness of this practice. Because BMPs will perform uniquely given climate and landscape position and how managers maintain them, we suggest the need for more nuanced guidance for future BMP designs to ensure successful outcomes.
Contamination from septic systems is one of the most difficult sources of nonpoint source (NPS) pollution to quantify. Quantification is difficult in part because locating malfunctioning septic systems within a watershed is challenging. This study used synthetic-DNA-based tracers to track flows from 2 septic systems. Sample DNA was quantified using quantitative polymerase chain reaction (qPCR). This technology could be especially useful for simultaneously assessing multiple septic systems because there are essentially infinite unique combinations of DNA bases such that unique tracers could be engineered for each septic system. Two studies were conducted: the first, to determine whether the tracers move through septic systems (experiment 1), and the second, to determine whether the tracers were detectable at watershed scales (experiment 2). In both cases, clear, although complex, breakthrough curves were detected. Experiment 1 revealed possible preferential flow paths that might not have been otherwise obvious, indicative of short circuiting systems. This proof of concept suggests that these tracers could be applied to watersheds suspected of experiencing NPS septic system pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.