Despite significantly improved survival and response rates in patients diagnosed with multiple myeloma, it still remains an incurable disease with a poor outcome, especially in high-risk groups. Allogeneic stem cell transplantation offers a potentially curative option but remains controversial due to considerable treatment-related toxicity. We analyzed 109 consecutive myeloma patients who had received reduced-intensity conditioning allogeneic transplantation at the Freiburg University Medical Center between 2000 and 2016. Although most patients were heavily pre-treated in high-risk constellations, the overall response rate was high with 70%, the median overall survival (OS) 39.2%, and the median progression-free survival (PFS) 14.2 months, with a median follow up of 71.5 months. Survival was significantly better in patients with response to previous therapies than in those with progressive disease (median OS 65 vs. 11.5 months, P=0.003; median PFS 18.4 vs. 5.1 months, P=0.001). Moreover, survival of patients transplanted in first-line was significantly prolonged compared to relapsed/refractory disease (median OS not reached vs. 21.6 months, P<0.001; median PFS 47.7 vs. 9.6 months, P<0.001). The non-relapse mortality was relatively low with a cumulative incidence of 12.4% at ten years. Acute graft-versus-host disease (GvHD) grade II-IV was observed in 25%, and moderate or severe chronic GvHD in 24%. Quality of life (QoL) assessed with the revised Myeloma Comorbidity Index before and after transplantation remained unchanged. Our data suggest that allogeneic transplantation in the context of novel immunotherapeutic approaches may enable long-term survival and even a potential cure in a carefully selected subgroup of high-risk multiple myeloma patients with acceptable toxicity and preserved QoL.
Circulating tumor DNA (ctDNA) has demonstrated great potential as a noninvasive biomarker to assess minimal residual disease (MRD) and profile tumor genotypes in patients with non‐small‐cell lung cancer (NSCLC). However, little is known about its dynamics during and after tumor resection, or its potential for predicting clinical outcomes. Here, we applied a targeted‐capture high‐throughput sequencing approach to profile ctDNA at various disease milestones and assessed its predictive value in patients with early‐stage and locally advanced NSCLC. We prospectively enrolled 33 consecutive patients with stage IA to IIIB NSCLC undergoing curative‐intent tumor resection (median follow‐up: 26.2 months). From 21 patients, we serially collected 96 plasma samples before surgery, during surgery, 1–2 weeks postsurgery, and during follow‐up. Deep next‐generation sequencing using unique molecular identifiers was performed to identify and quantify tumor‐specific mutations in ctDNA. Twelve patients (57%) had detectable mutations in ctDNA before tumor resection. Both ctDNA detection rates and ctDNA concentrations were significantly higher in plasma obtained during surgery compared with presurgical specimens (57% versus 19% ctDNA detection rate, and 12.47 versus 6.64 ng·mL−1, respectively). Four patients (19%) remained ctDNA‐positive at 1–2 weeks after surgery, with all of them (100%) experiencing disease progression at later time points. In contrast, only 4 out of 12 ctDNA‐negative patients (33%) after surgery experienced relapse during follow‐up. Positive ctDNA in early postoperative plasma samples was associated with shorter progression‐free survival (P = 0.013) and overall survival (P = 0.004). Our findings suggest that, in early‐stage and locally advanced NSCLC, intraoperative plasma sampling results in high ctDNA detection rates and that ctDNA positivity early after resection identifies patients at risk for relapse.
It has been proposed that the APC/C(Cdh1) functions as a tumor suppressor by maintaining genomic stability. However, the exact nature of genomic instability following loss of Cdh1 is unclear. Using biochemistry and live cell imaging of single cells we found that Cdh1 knockdown (kd) leads to strong nuclear stabilization of the substrates cyclin A and B and deregulated kinetics of DNA replication. Restoration of the Cdh1-dependent G2 DNA damage checkpoint did not result in G2 arrest but blocked cells in prometaphase, suggesting that these cells enter mitosis despite incomplete replication. This results in DNA double-strand breaks, anaphase bridges, cytokinesis defects and tetraploidization. Tetraploid cells are the source of supernumerary centrosomes following Cdh1-kd, leading to multipolar mitosis or centrosome clustering, in turn resulting in merotelic attachment and lagging chromosomes. Whereas some of these events cause apoptosis during mitosis, surviving cells may accumulate chromosomal aberrations.
Multiple myeloma (MM) is the second most common hematologic malignancy and represents approximately 10% of all hematological neoplasms. Standard therapy consists of induction therapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) or, if ASCT cannot be performed, standard doublet, triplet, or quadruplet, novel agent-containing induction treatment until progression. Although MM is still regarded as mostly incurable by current standards, the development of several novel compounds, combination therapies, and immunotherapy approaches has raised great hopes about transforming MM into an indolent, chronic disease and possibly achieving a cure for individual patients. Several new inhibitory and immunological agents have been approved or are under intensive investigation and may lead to new therapeutic options for patients with relapsed/refractory MM, for patients ineligible for ASCT, and for patients after ASCT. Especially in the field of immunotherapy, including monoclonal antibodies, checkpoint inhibition, and chimeric antigen receptor T cells, current advances are rapid and highly promising. This review aims to summarize the newest and most promising immunotherapeutic agents for MM, their clinical efficacy, their adverse event (AE) profiles, and the ways in which these AEs can best be overcome or avoided. Cancer 2018;124:2075-85. © 2018 American Cancer Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.