Although the association between maternal depression and adverse child outcomes is well established, the strength of the association, the breadth or specificity of the outcomes, and the role of moderators are not known. This information is essential to inform not only models of risk but also the design of preventive interventions by helping to identify subgroups at greater risk than others and to elucidate potential mechanisms as targets of interventions. A meta-analysis of 193 studies was conducted to examine the strength of the association between mothers' depression and children's behavioral problems or emotional functioning. Maternal depression was significantly related to higher levels of internalizing, externalizing, and general psychopathology and negative affect/behavior and to lower levels of positive affect/behavior, with all associations small in magnitude. These associations were significantly moderated by theoretically and methodologically relevant variables, with patterns of moderation found to vary somewhat with each child outcome. Results are interpreted in terms of implications for theoretical models that move beyond main effects models in order to more accurately identify which children of depressed mothers are more or less at risk for specific outcomes.
Genetic disorders involving the skeletal system arise through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their variety. The Nosology and Classification of Genetic Skeletal Disorders provides an overview of recognized diagnostic entities and groups them by clinical and radiographic features and molecular pathogenesis. The aim is to provide the Genetics, Pediatrics and Radiology community with a list of recognized genetic skeletal disorders that can be of help in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists interested in skeletal biology. In the 2010 revision, 456 conditions were included and placed in 40 groups defined by molecular, biochemical, and/or radiographic criteria. Of these conditions, 316 were associated with mutations in one or more of 226 different genes, ranging from common, recurrent mutations to “private” found in single families or individuals. Thus, the Nosology is a hybrid between a list of clinically defined disorders, waiting for molecular clarification, and an annotated database documenting the phenotypic spectrum produced by mutations in a given gene. The Nosology should be useful for the diagnosis of patients with genetic skeletal diseases, particularly in view of the information flood expected with the novel sequencing technologies; in the delineation of clinical entities and novel disorders, by providing an overview of established nosologic entities; and for scientists looking for the clinical correlates of genes, proteins and pathways involved in skeletal biology. © 2011 Wiley-Liss, Inc.
The application of massively parallel sequencing technology to the field of skeletal disorders has boosted the discovery of the underlying genetic defect for many of these diseases. It has also resulted in the delineation of new clinical entities and the identification of genes and pathways that had not previously been associated with skeletal disorders. These rapid advances have prompted the Nosology Committee of the International Skeletal Dysplasia Society to revise and update the last (2015) version of the Nosology and Classification of Genetic Skeletal Disorders. This newest and tenth version of the Nosology comprises 461 different diseases that are classified into 42 groups based on their clinical, radiographic, and/or molecular phenotypes.Remarkably, pathogenic variants affecting 437 different genes have been found in 425/461 (92%) of these disorders. By providing a reference list of recognized entities and their causal genes, the Nosology should help clinicians achieve accurate diagnoses for their patients and help scientists advance research in skeletal biology.
The purpose of the nosology is to serve as a "master" list of the genetic disorders of the skeleton to facilitate diagnosis and to help delineate variant or newly recognized conditions. This is the 9th edition of the nosology and in comparison with its predecessor there are fewer conditions but many new genes. In previous editions, diagnoses that were phenotypically indistinguishable but genetically heterogenous were listed separately but we felt this was an unnecessary distinction. Thus the overall number of disorders has decreased from 456 to 436 but the number of groups has increased to 42 and the number of genes to 364. The nosology may become increasingly important today and tomorrow in the era of big data when the question for the geneticist is often whether a mutation identified by next generation sequencing technology in a particular gene can explain the clinical and radiological phenotype of their patient. This can be particularly difficult to answer conclusively in the prenatal setting. Personalized medicine emphasizes the importance of tailoring diagnosis and therapy to the individual but for our patients with rare skeletal disorders, the importance of tapping into a resource where genetic data can be centralized and made available should not be forgotten or underestimated. The nosology can also serve as a reference for the creation of locus-specific databases that are expected to help in delineating genotype-phenotype correlations and to harbor the information that will be gained by combining clinical observations and next generation sequencing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.