The molecular target of rapamycin (mTOR) is central to a complex intracellular signaling pathway and is involved in diverse processes including cell growth and proliferation, angiogenesis, autophagy, and metabolism. Although sirolimus (rapamycin), the oldest inhibitor of mTOR, was discovered more than 30 years ago, renewed interest in this pathway is evident by the numerous rapalogs recently developed. These newer agents borrow from the structure of sirolimus and, although there are some pharmacokinetic differences, they appear to differ little in terms of pharmacodynamic effects and overall tolerability. Given the multitude of potential applications for this class of agents and the decrease in cost that can be expected upon the expiration of sirolimus patents, renewed focus on this agent is warranted.
In patients with acute leukemia, detection of minimal residual disease (MRD) before allogeneic hematopoietic cell transplantation (HCT) correlates with risk of relapse. However, the level of MRD that is most likely to preclude cure by HCT is unclear, and the benefit of further chemotherapy to reduce MRD before HCT is unknown. In 122 children with very-high-risk acute lymphoblastic leukemia (ALL; n = 64) or acute myeloid leukemia (AML, n = 58), higher MRD levels at the time of HCT predicted a poorer survival after HCT (P = .0019); MRD was an independent prognostic factor in a multivariate analysis (P = .0035). However, the increase in risk of death associated with a similar increment of MRD was greater in ALL than in AML, suggesting that a pretransplantation reduction of leukemia burden would have a higher impact in ALL. At any given MRD level, survival rates were higher for patients treated in recent protocols: the 5-year overall survival for patients with ALL was 49% if MRD was detectable and 88% if it was not and the corresponding rates for patients with AML were 67% and 80%, respectively. Although MRD before HCT is a strong prognostic factor, its impact has diminished and should not be regarded as a contraindication for HCT.
We evaluated 190 children with very highrisk leukemia, who underwent allogeneic hematopoietic cell transplantation in 2 sequential treatment eras, to determine whether those treated with contemporary protocols had a high risk of relapse or toxic death, and whether non-HLA-identical transplantations yielded poor outcomes. For the recent cohorts, the 5-year overall survival rates were 65% for the 37 patients with acute lymphoblastic leukemia and 74% for the 46 with acute myeloid leukemia; these rates compared favorably with those of earlier cohorts (28%, n ؍ 57; and 34%, n ؍ 50, respectively). Improvement in the recent cohorts was observed regardless of donor type (sibling, 70% vs 24%; unrelated, 61% vs 37%; and haploidentical, 88% vs 19%), attributable to less infection (hazard ratio [HR] ؍ 0.12; P ؍ .005), regimen-related toxicity (HR ؍ 0.25; P ؍ .002), and leukemiarelated death (HR ؍ 0.40; P ؍ .01). Survival probability was dependent on leukemia status (first remission vs more advanced disease; HR ؍ 0.63; P ؍ .03) or minimal residual disease (positive vs negative; HR ؍ 2.10; P ؍ .01) at the time of transplantation. We concluded that transplantation has improved over time and should be considered for all children with very high-risk leukemia, regardless of matched donor availability. (Blood. 2011;118(2):223-230)
HLA-matched related donor (MRD) hematopoietic stem cell transplantation (HSCT) is a well-established therapy for patients with sickle cell disease (SCD); however, experience using alternative donors, including haploidentical donors, in HSCT for SCD is limited. We report the long-term outcomes of 22 pediatric patients who underwent related donor HSCT for SCD at St. Jude Children’s Research Hospital, either a myeloablative sibling MRD HSCT (n = 14) or reduced-intensity parental haploidentical donor HSCT (n = 8). The median patient age was 11.0 ± 3.9 years in the MRD graft recipients and 9.0 ± 5.0 years in the haploidentical donor graft recipients. The median follow-up was 9.0 ± 2.3 years, with an overall survival (OS) of 93% and a recurrence/graft failure rate of 0%, for the MRD cohort and 7.4 ± 2.4 years, with an OS of 75%, disease-free survival of 38%, and disease recurrence of 38%, for the haploidentical donor cohort. We report the long-term hematologic response and organ function in patients undergoing MRD or haploidentical donor HSCT for severe SCD. Our data demonstrate long-term hematologic improvements after HSCT with sustained engraftment, and confirm that HSCT offers long-term protection from common complications of SCD, including stroke, pulmonary hypertension, acute chest, and nephropathy, regardless of donor source.
Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.