Summary1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should be expected from the added impacts of herbivore and pathogen when they attack alone.2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant-herbivore-pathogen interactions on plant performance and used meta-analysis to search for consistent patterns of impacts among plant, herbivore and pathogen characteristics and experimental conditions, and to test the suggested hypotheses on synergistic or antagonistic impacts. 4. None of the hypotheses based on proximate interactions between arthropods and pathogens were supported by our analysis; in contrast, the patterns we found were related to plant traits and experimental conditions. 5. Our results suggest that immediate loss of resources from interactions between arthropod herbivores and pathogens is generally moderated by compensation to an extent where there are no interactive effects on plant performance. However, as interactive impacts also differed among environments and parasite manipulation methods, this suggests that the ability of plants to compensate such losses may depend on environmental conditions and probably also overall infection load.
Many invasive alien plants occur in large populations with abundant flowers which are highly attractive to pollinators, and thus might affect pollination of co-occurring native species. This study focuses on the invasive Heracleum mantegazzianum and distance-dependent effects on pollination of Mimulus guttatus in abandoned grassland over 2 years. First, we examined pollinator abundance in yellow traps at 0, 10, 30 and 60-200 m from H. mantegazzianum. We then placed M. guttatus plants at the same distances to monitor effects of the invasive species on pollinator visitation and seed set of neighbouring plants. Finally, we conducted a garden experiment to test if deposition of H. mantegazzianum pollen reduces seed set in M. guttatus. No distance effect was found for the number of bumblebees in traps, although the invasive species attracted a diverse assemblage of insects, and visitation of M. guttatus was enhanced close to H. mantegazzianum. This positive effect was not reflected by seed set of M. guttatus, and heterospecific pollen decreased seed set in these plants. Overall there is little evidence for negative effects of the invasive species on pollination of neighbouring plants, and flower visitation even increases close to the invaded patches. The functional role of the invader and suitable control strategies need further clarification, since removal of H. mantegazzianum may actually damage local pollinator populations.
The interactions of plants with herbivores and pathogens have been suggested to drive the evolution of resistances in plants and in some cases new lineages and taxa. However, such divergence may require reproductive isolation, e.g., in allopatry. In the crucifer Barbarea vulgaris, some plants are resistant to the flea beetle Phyllotreta nemorum, due to production of specific saponins, whereas others are susceptible. Resistant and susceptible plants additionally differ in resistance to the pathogen Albugo candida, content of glucosinolates, and leaf pubescence, and they are genetically strongly divergent and partially reproductively incompatible. This suggests that at some point they were separated for a considerable length of time. Previously, the insect susceptible P-type had been described only from Denmark, Sweden, and Estonia, whereas the resistant G-type is widely distributed in Western Europe. Here, we tested whether the two plant types have divergent geographical distributions and maintain their distinct trait associations throughout their range. The insect-susceptible type was found in Russia, the Baltics, and parts of Fennoscandia, but not in Central Europe. In contrast, the insect resistant type was found from Finland and westwards. Their different trait associations were consistent within the two ranges. We therefore suggest that the two plant types diverged in allopatry at some time in the past, and evolved different resistances in response to local antagonists. The two plant types probably maintain their distinctness due to a hybridization barrier. Thus, the present distributions of the two types may be shaped by both historical processes and current differential biotic selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.