In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.
In the honey bee, Apis mellifera, the fifth larval instar is a critical period for caste differentiation. During this premetamorphic phase the hormonal milieu shows pronounced caste differences and several organs, particularly the ovaries, enter different developmental pathways leading to highly fertile queens and nearly sterile workers. Developmental profiles of total protein synthesis in larval ovaries showed marked caste differences starting with the early fifth instar. By two-dimensional electrophoresis, caste-specific patterns could be detected in the synthesis of a 29 kDa/pI 4.6 and two 24 kDa/pI 5.2-5.5. proteins (pI=isoelectric point). A marked decrease in the expression of these proteins was found to coincide with caste-specific differences in the haemolymph ecdysteroid titer. In vitro exposure of larval worker ovaries to physiological (10 M) concentrations of synthetic makisterone A elicited an identical response. Juvenile hormone did not affect protein synthesis patterns in larval ovaries, and also did not inhibit or reverse the ecdysteroid-induced effects. Heat shock experiments revealed that the 29 kDa/pI 4.6 ecdysteroid-regulated protein belongs to the class of small heat shock proteins.
-Many aspects in caste polyphenism result from hormonally controlled differential gene expression. A DDRT-PCR screen for ecdysteroid-regulated genes in ovaries revealed a set of ESTs coding for metabolic enzymes. For a cDNA encoding a short-chain dehydrogenase/reductase (SDR) we obtained the complete coding sequence (246 amino acids), revealing the protein motifs typical of insect SDRs. Its initially high expression in early fifth-instar larvae vanished in prepupae. Expression levels in worker larvae were higher than in queen larvae, suggesting negative regulation by the caste-specific ecdysteroid titer. This finding was confirmed by in vitro exposure of competent worker ovaries to makisterone A. In contrast to whole body RNA extracts, two SDR transcripts were detected in the ovaries. Both had their expression downregulated by makisterone A. Hormonal regulation and tissue-specific expression pattern makes this SDR an interesting enzyme for comparative molecular studies on social insect caste polyphenisms.Apis mellifera / differential display PCR / ecdysteroid / alcohol dehydrogenase / caste polyphenism
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.