Three porous polymer networks (PPNs) have been synthesized by the homocoupling of tetrahedral monomers. Like other hyper-cross-linked polymer networks, these materials are insoluble in conventional solvents and exhibit high thermal and chemical stability. Their porosity was confirmed by N2 sorption isotherms at 77 K. One of these materials, PPN-3, has a Langmuir surface area of 5323 m2 g−1. Their clean energy applications, especially in H2, CH4, and CO2 storage, as well as CO2/CH4 separation, have been carefully investigated. Although PPN-1 has the highest gas affinity because of its smaller pore size, the maximal gas uptake capacity is directly proportional to their surface area. PPN-3 has the highest H2 uptake capacity among these three (4.28 wt %, 77 K). Although possessing the lowest surface area, PPN-1 shows the best CO2/CH4 selectivity among them.
Bioconjugation techniques using organic azides are compared in this critical review. A particular focus is on chemical ligation reactions and their application to chemical biology (179 references).
A modular concept for the generation of achiral and chiral non-racemic tetrahedral tectons from common precursors was developed. The tectons presented here are based on tetraphenylmethane or 1,3,5,7-tetraphenyladamantane core structures. They are obtained through high-yielding four-fold click reactions, using either the tetraazido or the tetraalkyne precursors. In most cases, the tetratriazoles are obtained as pure products after simple washing with water and methanol. The side chains of the tectons prepared include a self-complementary DNA dimer, obtained from a 3'-azidonucleoside and a phosphoramidite. The concept allows for a variation of the "sticky ends", leading to tecton or ligand libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.