International rice export markets are increasing demands for rapid improvements in grain quality characteristics. The African rice Oryza glaberrima is a new potential source of genes that will enhance the eating, cooking, and milling properties of the rice grain. The objective of this research was to identify and characterize quantitative trait loci (QTLs) among 312 doubled haploid lines derived from the BC3F1 of an interspecific cross of O. sativa x O. glaberrima. Genetic material was planted in replicated plots and evaluated for ten grain quality traits in 2001 in Colombia. A linkage map was constructed with 100 polymorphic microsatellite markers using the mapdisto software program to adjust for segregation distortion. Transgressive segregation was observed for all traits. Interval and composite interval analyses identified 27 QTLs for nine characters located on 11/12 chromosomes. The chromosomal positions of QTLs for percentage amylose, alkali-spreading score, and percentage protein were in agreement with data reported by others, whereas QTL markers for percentage head rice, percentage milled rice, percentage protein, and percentage brown rice were different in our mapping population. Five major QTLs were found to be associated with improved percentage rice bran, percentage amylose, and alkali-spreading score. Seven QTLs for improved percentage rice bran, percentage milled rice, alkali-spreading score, percentage protein, and grain length/width ratio were derived from the O. glaberrima accession. Three new QTLs for percentage rice bran are reported here for the first time. Results from this study suggest that the African rice might be a valuable new source for introgression and improvement of several traits that affect quality traits demanded by the different rice export markets.
Kernel morphology and texture influence the value of wheat (Triticum aestivum L.). The objectives of this study were to determine associations between kernel traits and molecular markers and to identify quantitative trait loci (QTLs) affecting kernel traits in a soft × hard white wheat cross. Seventy eight F~-derived recombinant inbred lines (RILs) from cross be tween the so ft wh ite wh eat NY 6432-18 (NY18) and the hard white wheat 'Clark's Cream' (CC) were developed by single seed descent. Kernel texture was measured by near infrared reflectance (NIR) on RIL grain samples from six environments. Digital image analysis (DIA) was used to measure kernel length, width, area, perimeter on grain samples from four environments. Test weight and thousand kernel weight (TKW) were also determined. Shape factor and density factor were calculated. The map for this population consisted of 313 molecular markers in 47 linkage groups located on all wheat homoeologous chromosome groups. Linkage groups that mapped to wheat homoeologous group 2 chromosomes were highly skewed towards NY18 alleles. Genotype effects and genotype × environment interactions were highly significant for most traits. QTLs for kernel width and kernel length also influenced kernel area and TKW, but did not influence each other. The pinB marker at the puroindoline B locus on chromosome 5DS explained over 60% of the phenotypic variation for kernel texture. QTLs for kernel traits were located on chromosomes IA, 2B, 2D, 3B, 7A, and 7B. Tm HE ECONOMIC VALUE of the U.S. wheat crop is deterined by class, which depends in part on kernel morphology and texture, and by test weight. Inspectors for the U.S. Grain Inspection, Packers and Stockyards Administration use color, shape, and length of the kernel and shape of the germ, crease, and brush to determine wheat grain classes (GIPSA, 1997). In general, hard wheat kernels are long, narrow, and translucent while soft kernels are short, rounded, and chalky in appearance. Hybridization between classes reduces the correlation between kernel morphology and wheat class and reduces the accuracy of the current classification
Cereal Chem. 82(6):645-648Important rice grain quality characteristics such as percentage of chalky rice kernels are affected by both high and low night temperatures and by different day and day/night temperature combinations. High nighttime temperatures have also been suspected of reducing rice milling quality including head rice yields. Experiments to confirm or refute this have not been reported. A controlled climate experiment was conducted. Conditions in the chambers were identical except between 2400 and 0500 hours (midnight and 5 am). For those times, two temperature treatments were imposed: 1) 18°C (low temperature treatment) and 2) 24°C (high temperature treatment). Two cultivars were tested: LaGrue and Cypress. The high temperature treatment reduced head rice yields compared with the low temperature treatment. Grain widths were reduced for the high temperature treatment compared with the low temperature treatment. There was no effect of temperature on grain length or thickness. Amylopectin chain lengths 13-24 were increased by the high temperature treatment by ≈1%. Future research will focus on determining whether genetic variability exists among cultivars in their head rice yield response to high temperatures. After identifying a source of resistance to high temperature effects, this characteristic can be incorporated into rice cultivars. In addition, ways to reduce this effect, including biotechnological remedies, have the potential for increasing rice yield and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.