Background Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. Methods In this phase 1–2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 μg, Ad26.COV2.S (Johnson & Johnson–Janssen) at a dose of 5×10 10 virus particles, or BNT162b2 (Pfizer–BioNTech) at a dose of 30 μg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. Results Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. Conclusions Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209 .)
The Salmonella typhimurium PhoP-repressed locus prgHIJK encodes components of a sec-independent type III secretion apparatus. This apparatus is composed of at least 17 proteins encoded on a 40 kb pathogenicity Island located at centisome 63 on the S. typhimurium chromosome. The secretion apparatus and some of its targets, SapB, SapC and SspD, are necessary for epithelial cell invasion. The transcription of many invasion genes, including prgHIJK, is coordinately activated by HilA, a transcription factor encoded within the pathogenicity island. In this report we identify sirA, a gene located outside the pathogenicity island that is essential for induction of prgHIJK and hilA transcription. sirA encodes a 234-amino-acid protein that is essential for S. typhimurium Ssp (Salmonella secreted protein) secretion and invasion and is similar to response regulators of two-component regulatory systems. sirA-mutant phenotypes could be suppressed by two DNA clones from unlinked loci, designated sirB and sirC. These data suggest that SirA may be phosphorylated in response to S. typhimurium sensing a mammalian microenvironment. Furthermore, SirA phosphorylation is predicted to initiate a cascade of transcription-factor synthesis which results in invasion-gene transcription, Ssp secretion, and bacterial invasion of epithelia.
Salmonella typhimurium secreted proteins (Ssp) were previously implicated in epithelial cell invasion. Here we describe four genes (SspB, sspC, sspD, and sspA), located between spaT and prgH, which encode proteins of 63, 42, 36, and 87 kDa, respectively. These Ssp are homologous to Shigella flexneri secreted proteins IpaB, IpaC, IpaD and IpaA. A non-invasive mutant with a transposon insertion in sspC lacks Ssp of 87, 42 and 36 kDa. Complementation and analyses show that sspC and sspD encode the 42 and the 36 kDa Ssp, while the 87 kDa Ssp is encoded by sspA. sspC and sspD, but not sspA, are required for invasion. Amino-terminal sequencing shows that SspC and SspA are secreted without amino-terminal processing. We further demonstrate that Ssp secretion requires proteins encoded by prgHIJK, homologous to the Shigella Ipa secretion system, since SspA is abundantly secreted by wild-type bacteria but is completely retained within the cellular fraction of a prgHIJK mutant. A precipitate containing abundant SspC and three other major Ssp of 63, 59 and 22 kDa was isolated from culture supernatants of wild-type bacteria. These data indicate that major secreted invasion determinants of S. typhimurium are structurally and functionally homolgous to S. flexneri Ipa proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.