While both Homologous recombination (HR) and Non Homologous End Joining (NHEJ) can repair DNA double Strand Breaks (DSB), the mechanisms by which one or other of these pathways is chosen remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq), to analyse repair of multiple DSBs induced throughout the human genome, we identify an "HRprone" subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes, and targeted to HR repair via the transcription-elongation associated histone mark, histone H3 lysine 36 trimethylation (H3K36me3). In agreement, depletion of SETD2, the main H3K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role of the chromatin context, in which a break occurs, in DSB repair.
Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.