Plants can defend themselves against a wide array of enemies, yet one of the most striking observations is the variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack1. A second explanation comes from an evolutionary tug of war, in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion2-5. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best justified by costs incurred from constitutive defences in a pest free environment6-11. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6)12,13, underpins dramatic pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its drastic impact on growth.
Aldehyde dehydrogenases (ALDHs) play a major role in the detoxification processes of aldehydes generated in plants when exposed to abiotic stress. In previous studies, we have shown that the Arabidopsis thaliana ALDH3I1 gene is transcriptionally activated by abiotic stress, and over-expression of the ALDH3I1 gene confers stress tolerance in transgenic plants. The A. thaliana genome contains 14 ALDH genes expressed in different sub-cellular compartments and are presumably involved in different reactions. The purpose of this study was to compare the potential of a cytoplasmic and a chloroplastic stress-inducible ALDH in conferring stress tolerance under different conditions. We demonstrated that constitutive or stress-inducible expression of both the chloroplastic ALDH3I1 and the cytoplasmic ALDH7B4 confers tolerance to osmotic and oxidative stress. Stress tolerance in transgenic plants is accompanied by a reduction of H2O2 and malondialdehyde (MDA) derived from cellular lipid peroxidation. Involvement of ALDHs in stress tolerance was corroborated by the analysis of ALDH3I1 and ALDH7B4 T-DNA knockout (KO) mutants. Both mutant lines exhibited higher sensitivity to dehydration and salt than wild-type (WT) plants. The results indicate that ALDH3I1 and ALDH7B4 not only function as aldehyde-detoxifying enzymes, but also as efficient reactive oxygen species (ROS) scavengers and lipid peroxidation-inhibiting enzymes. The potential of ALDHs to interfere with H2O2 was also shown for recombinant bacterial proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.