The DNA polymerase in crude extracts of Drosophila melanogaster embryos sedimented at 9.0, 7.3, and 5.5 S on glycerol velocity gradients. The relative proportions of these enzymes depended on the method used to prepare the extract. Extracts of whole embryos contained the 7.3S and the 5.5S DNA polymerases and extracts of dechorionated embryos contained the 9.0S and 7.3S DNA polymerases. The porportion of the 5.5S DNA polymerase increased relative to the 7.3S DNA polymerase during storage of the extract of whole embryos. The protease inhibitor, phenylmethanesulfonyl fluoride, inhibited the formation of the 5.5S DNA polymerase, suggesting that it was proteolytically produced from the 7.3S DNA polymerase. This was demonstrated directly by converting the 7.3S DNA polymerase to the 5.5S DNA polymerase by treatment in vitro with trypsin. The degradation of the enzyme occurred without significant loss of DNA polymerase activity. It is further demonstrated that endogenous proteolysis reduced the chromatographic heterogeneity of the Drosophila DNA polymerase on diethylaminoethyl-Sephadex. When endogenous proteolysis was reduced, three forms of DNA polymerase were isolated by diethylaminoethylcellulose chromatography; two of these enzymes sedimented at 7.3S and the third sedimented at 9.0S. These results demonstrate the physical heterogeneity of the Drosophila DNA polymerase and suggest its similarity to vertebrate DNA polymerase-alpha.
A series of oligonucleotides containing biotin-11-dUMP at various positions were synthesized and compared in quantitative, colorimetric hybridization-detection studies. A deoxyuridine phosphoramidite containing a protected allylamino sidearm was synthesized and used in standard, automated synthesis cycles to prepare oligonucleotides with allylamino residues at various positions within a standard 17-base sequence. Biotin substituents were subsequently attached to the allylamino sidearms by reaction with N-biotinyl-6-aminocaproic acid N-hydroxysuccinimide ester. These oligomers were hybridized to target DNA immobilized on microtiter wells (ELISA plates), and were detected with a streptavidin-biotinylated horseradish peroxidase complex using hydrogen peroxide as substrate and o-phenylenediamine as chromogen. We found that the sensitivity of detection of target DNA by biotin-labeled oligonucleotide probes was strongly dependent upon the position of the biotin label. Oligonucleotides containing biotin labels near or off the ends of the hybridizing sequence were more effective probes than oligonucleotides containing internal biotin labels. An additive effect of increasing numbers of biotin-dUMP residues was found for some labeling configurations.
Oligodeoxynucleotides with different arrangements of methylphosphonate linkages were examined for nuclease sensitivity in vitro, stability in tissue culture, and ability to form RNase H-sensitive substrates with complementary RNA. After nuclease treatment, resistance was demonstrated by the ability to alter the electrophoretic mobility of a labeled complementary phosphodiester oligodeoxynucleotide. Both 5'- and 3'-exonuclease activities were retarded by methylphosphonate linkages. Methylphosphonate-containing oligodeoxynucleotides with 1-5 adjacent phosphodiester linkages were tested as substrates for the endonucleases DNase I and DNase II. The results indicated that a span of three or fewer contiguous internal phosphodiester linkages led to the greatest resistance to endonuclease. However, in serum-supplemented culture medium half-lives of these oligodeoxynucleotides were independent of the number of contiguous phosphodiester linkages. Methylphosphonate-containing oligodeoxynucleotides were hybridized to RNA runoff transcripts and tested as substrates for RNase H. The results indicated that a span of three internal phosphodiester linkages in the oligodeoxynucleotide was necessary and sufficient to direct cleavage of the RNA in the duplex.
Lesion specimens from 118 episodes of recurrent genital herpes were used to compare herpes simplex virus (HSV) isolation with a direct specimen test for in situ DNA hybridization utilizing a biotinylated probe. The frequency of detection of HSV was similar with both tests; HSV was isolated from 81% of vesicular lesions, 76% of pustules, and 67% of ulcers, while HSV DNA was detected in 77, 76, and 55% of lesions in these stages, respectively. Utilizing both methods, HSV was identified in 91, 94, and 79%, respectively. The sensitivity and specificity of the DNA probe in comparison to standard viral isolation in tissue culture were 92 and 63%, respectively. Seven DNA-positive, viral isolation-negative specimens were obtained from patients who had positive culture confirmation at some time subsequent or prior to enrollment, suggesting that these were true positive results. The sensitivity of the DNA probe was dependent on cellular content of the specimen, and 36 (28%) of the 127 submitted specimens had fewer than 20 nonsuperficial cells. The DNA probe was rapid and convenient; its major disadvantage was the lack of type-specific information. The performance of the probe in lower-prevalence populations and in asymptomatic shedding of HSV remains to be evaluated.
Poly(A) polymerase activity is induced during vaccinia virus infection of HeLa cells. The enzyme is maximally induced at 3.5 h postinfection. Partial purification frees the preparation of RNase activity and RNA polymerase activity. ATP is the substrate for poly(A) synthesis. A small amount of poly(A) is produced from added adenosine diphosphate due to the production of ATP by an adenylate kinase present in the preparation. The incorporation of ATP into poly(A) is dependent on divalent cations (Mg 2+ or Mn 2+ ) and is not inhibited by UTP, CTP, or GTP. Poly(U) stimulates ATP incorporation; poly(A) and poly(C) have little effect on ATP incorporation, and poly(dT) is extremely inhibitory. RNA prepared from HeLa cells and from the partially purified poly(A) polymerase (the enzyme preparation contains endogenous RNA [Brakel and Kates]) stimulates ATP incorporation by poly(A) polymerase which was subjected to DEAE-cellulose chromatography. RNase's, pancreatic and T 1 , inhibit the production of poly(A). DNase has little effect. Poly(U) is able to stimulate poly(A) production in the presence of T 1 RNase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.