BACKGROUND Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is not uncommonly associated with chorioamnionitis. We recently have demonstrated that the placenta harbors a unique microbiome with similar flora to the oral community. We also have shown an association of these placental microbiota with PTB, history of antenatal infection, and excess maternal weight gain. On the basis of these previous observations, we hypothesized that the placental membranes would retain a microbiome community that would vary in association with preterm birth and chorioamnionitis. OBJECTIVE In the current study, we aimed to examine the differences in the placental membrane microbiome in association with PTB in both the presence and absence of chorioamnionitis and/ or funisitis using state-of-the-science whole-genome shotgun metagenomics. STUDY DESIGN This was a cross-sectional analysis with 6 nested spontaneous birth cohorts (n = 9–15 subjects/cohort): Term gestations without chorioamnionitis, term with chorioamnionitis, preterm without chorioamnionitis, preterm with mild chorioamnionitis, preterm with severe chorioamnionitis, and preterm with chorioamnionitis and funisitis. Histologic analysis was performed with Redline's criteria, and inflammatory cytokines were analyzed in the cord blood. DNA from placental membranes was extracted from sterile swabs collected at delivery, and whole-genome shotgun sequencing was performed on the Illumina HiSeq platform. Filtered microbial DNA sequences were annotated and analyzed with MG-RAST (ie, Metagenomic Rapid Annotations using Subsystems Technology) and R. RESULTS Subjects were assigned to cohorts on the basis of gestational age at delivery and independent scoring of histologic chorioamnionitis. We found that preterm subjects with severe chorioamnionitis and funisitis had increases in cord blood inflammatory cytokines. Of interest, although the placental membrane microbiome was altered in association with severity of histologic chorioamnionitis (permutational multivariate analysis of variance P = .005), there was no observable impact with either beta-methasone or antibiotic treatment. In preterm subjects with chorioamnionitis, we found a high abundance of both urogenital and oral commensal bacteria. These alterations in the microbiome were accompanied by significant variation (P < .05) in microbial metabolic pathways important in the glucose-fed pentose phosphate pathway (term subjects), or glycerophopholipid metabolism, and the biosynthesis of the siderophore group nonribosomal peptides (preterm subjects). CONCLUSION Consistent with ours and others previous findings, women who experienced spontaneous PTB harbor placental microbiota that further differed by severity of chorioamnionitis. Integrative meta-genomic analysis revealed significant variation in distinct bacterial metabolic pathways, which we speculate may contribute to risk of preterm birth with and without severe chorioamnionitis.
SUMMARY The human Ureaplasma species are the most frequently isolated microorganisms from the amniotic fluid and placentae of women who deliver preterm and are also associated with spontaneous abortions or miscarriages, neonatal respiratory diseases, and chorioamnionitis. Despite the fact that these microorganisms have been habitually found within placentae of pregnancies with chorioamnionitis, the role of Ureaplasma species as a causative agent has not been satisfactorily explained. There is also controversy surrounding their role in disease, particularly as not all women infected with Ureaplasma spp. develop chorioamnionitis. In this review, we provide evidence that Ureaplasma spp. are associated with diseases of pregnancy and discuss recent findings which demonstrate that Ureaplasma spp. are associated with chorioamnionitis, regardless of gestational age at the time of delivery. Here, we also discuss the proposed major virulence factors of Ureaplasma spp., with a focus on the multiple-banded antigen (MBA), which may facilitate modulation/alteration of the host immune response and potentially explain why only subpopulations of infected women experience adverse pregnancy outcomes. The information presented within this review confirms that Ureaplasma spp. are not simply “innocent bystanders” in disease and highlights that these microorganisms are an often underestimated pathogen of pregnancy.
Preterm birth is a major cause of neonatal mortality and morbidity worldwide. Bacterial infection and the subsequent inflammatory response are recognised as an important cause of preterm birth. It is hypothesised that these organisms ascend the cervical canal, colonise placental tissues, cause chorioamnionitis and in severe cases infect amniotic fluid and the foetus. However, the presence of bacteria within the intrauterine cavity does not always precede chorioamnionitis or preterm birth. Whereas previous studies observing the types of bacteria present have been limited in size and the specificity of a few predetermined organisms , in this study we characterised bacteria found in placental tissues from a cohort of 1391 women in rural Malawi using 16S ribosomal RNA gene sequencing. We found that specific bacteria found concurrently on placental tissues associate with chorioamnionitis and delivery of a smaller newborn. Severe chorioamnionitis was associated with a distinct difference in community members, a higher bacterial load and lower species richness. Furthermore, Sneathia sanguinengens and Peptostreptococcus anaerobius found in both matched participant vaginal and placental samples were associated with a lower newborn length-forage Z-score. This is the largest study to date to examine the placental microbiome and its impact of birth outcomes. Our results provide data on the role of the vaginal microbiome as a source of placental infection as well as the possibility of therapeutic interventions against targeted organisms during pregnancy.
Objective-To determine effects in late gestation of U. parvum serovar 3 colonization, and effects, preterm, of U. parvum serovar 6. Study design-Ewes received an intra-amniotic (IA) injection of U. parvum serovar 6 (20x10 6 cfu; n=9), U. parvum serovar 3 (20x10 3 cfu; n=6), vehicle (n=10) or saline (n=4) on day 80 of pregnancy (d). Lambs were delivered at 125d (ureaplasma, n=9; saline or media controls, n=9) or 145d (ureaplasma, n=6; media controls, n=5) for assessment of inflammation and lung maturation.Results-IA ureaplasmas caused histologic chorioamnionitis but not preterm delivery. Fetal lung epithelium was colonized with ureaplasmas at both gestational ages and pulmonary IL-8 levels had doubled in the ureaplasma-colonized animals compared to controls at 145d. Surfactant levels in bronchoalveolar lavage fluid had increased 8 fold and 2.5 fold at 125 and 145d, respectively after ureaplasma injection. Conclusions-Fetal
Bronchopulmonary dysplasia is associated with chorioamnionitis and fetal lung inflammation. Ureaplasma species are the bacteria most frequently isolated from chorioamnionitis. Very chronic ureaplasma colonization of amniotic fluid causes low-grade lung inflammation and functional lung maturation in fetal sheep. Less is known about shorter exposures of the fetal lung. Therefore, we hypothesized that ureaplasmas would cause an acute inflammatory response that would alter lung development. Singleton ovine fetuses received intra-amniotic Ureaplasma parvum serovar 3 or control media at 110, 117, or 121 days and were delivered at 124 days gestational age (term = 150 days). Inflammation was assessed by 1) cell counts in bronchoalveolar lavage fluid (BALF), and 2) cytokine mRNA measurements, immunohistochemistry, and flow cytometry for inflammatory cells and elastin and α-smooth muscle actin (α-SMA) staining in lung tissue. Neutrophils were increased in BALF 3 days after exposure to ureaplasmas (P = 0.01). Myeloperoxidase-positive cells increased after 3 days (P = 0.03), and major histocompatibility complex (MHC) class II-positive cells increased after 14 days of ureaplasma exposure (P = 0.001). PU.1 (macrophage marker)- or CD3 (T lymphocyte marker)-positive cells were not induced by ureaplasmas. CD3-positive cells in the posterior mediastinal lymph node increased in ureaplasma-exposed animals at 3, 7, and 14 days (P = 0.002). Focal elastin depositions decreased in alveolar septa at 14 days (P = 0.002), whereas α-SMA increased in arteries and bronchioli. U. parvum induced a mild acute inflammatory response and changed elastin and α-SMA deposition in the lung, which may affect lung structure and subsequent development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.