We describe a solid-state material formed from binary assembly of atomically precise molecular clusters. [Co6Se8(PEt3)6][C60]2 and [Cr6Te8(PEt3)6][C60]2 assembled into a superatomic relative of the cadmium iodide (CdI2) structure type. These solid-state materials showed activated electronic transport with activation energies of 100 to 150 millielectron volts. The more reducing cluster Ni9Te6(PEt3)8 transferred more charge to the fullerene and formed a rock-salt-related structure. In this material, the constituent clusters are able to interact electronically to produce a magnetically ordered phase at low temperature, akin to atoms in a solid-state compound.
CONSPECTUS: This Account describes a body of research in the design, synthesis, and assembly of molecular materials made from strained polycyclic aromatic molecules. The strain in the molecular subunits severely distorts the aromatic molecules away from planarity. We coined the term "contorted aromatics" to describe this class of molecules. Using these molecules, we demonstrate that the curved pi-surfaces are useful as subunits to make self-assembled electronic materials. We have created and continue to study two broad classes of these "contorted aromatics": discs and ribbons. The figure that accompanies this conspectus displays the three-dimensional surfaces of a selection of these "contorted aromatics". The disc-shaped contorted molecules have well-defined conformations that create concave pi-surfaces. When these disc-shaped molecules are substituted with hydrocarbon side chains, they self-assemble into columnar superstructures. Depending on the hydrocarbon substitution, they form either liquid crystalline films or macroscopic cables. In both cases, the columnar structures are photoconductive and form p-type, hole- transporting materials in field effect transistor devices. This columnar motif is robust, allowing us to form monolayers of these columns attached to the surface of dielectrics such as silicon oxide. We use ultrathin point contacts made from individual single-walled carbon nanotubes that are separated by a few nanometers to probe the electronic properties of short stacks of a few contorted discs. We find that these materials have high mobility and can sense electron-deficient aromatic molecules. The concave surfaces of these disc-shaped contorted molecules form ideal receptors for the molecular recognition and assembly with spherical molecules such as fullerenes. These interfaces resemble ball-and-socket joints, where the fullerene nests itself in the concave surface of the contorted disc. The tightness of the binding between the two partners can be increased by creating more hemispherically shaped contorted molecules. Given the electronic structure of these contorted discs and the fullerenes, this junction is a molecular version of a p-n junction. These ball-and-socket interfaces are ideal for photoinduced charge separation. Photovoltaic devices containing these molecular recognition elements demonstrate approximately two orders of magnitude increase in charge separation. The ribbon-shaped, contorted molecules can be conceptualized as ultranarrow pieces of graphene. The contortion causes them to wind into helical ribbons. These ribbons can be formed into the active layer of field effect transistors. We substitute the ribbons with di-imides and therefore are able to transport electrons. Furthermore, these materials absorb light strongly and have ideal energetic alignment of their orbitals with conventional p-type electronic polymers. In solar cells, these contorted ribbons with commercial donor polymers have record efficiencies for non-fullerene-based solar cells. An area of interest for future explo...
This work explores the formation of well-defined molecular p-n junctions in solution-processed self-assembled heterojunction solar cells using dodecyloxy-substituted contorted hexabenzocoronene (12-c-HBC) as a donor material and phenyl-C(70)-butyric acid methyl ester (PC(70)BM) as an acceptor. We find that the contorted 12-c-HBC molecules effectively assemble in solution to form a nested structure with the ball-shaped PC(70)BM. The result is a self-assembled molecular-scale p-n junction. When this well-defined p-n junction is embedded in active films, we can make efficient self-assembled solar cells with minimal amounts of donor material relative to the acceptor. The power conversion efficiency is drastically enhanced by the mode of donor and acceptor assembly within the film.
This article describes the synthesis of a new type of bowl-shaped polycyclic aromatic hydrocarbon. These bowls are formed by joining the proximal carbons of contorted hexabenzocoronenes. These methods begin to tap a wealth of structural diversity available from these core structures. The bowlshaped hydrocarbons more easily accept electrons than their contorted hexabenzocoronene precursors and associate strongly with C 70 .
Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.