Asian soybean rust (ASR), caused by Phakopsora pachyrhizi and recently discovered for the first time in continental United States, has been of concern to the U.S. agricultural industry for more than 30 years. Since little soybean rust resistance is known, and resistance is often difficult to detect or quantitate, we initiated a project to develop a better, more quantitative, method. The methodology determined the average numbers and diameters of uredinia in lesions that developed on leaves of inoculated plants 14 days after inoculation. It was used to compare virulence of P. pachyrhizi isolates from Asia and Australia and P. meibomiae from Puerto Rico and Brazil, collected as many as 30 years earlier, with isolates of P. pachyrhizi recently collected from Africa or South America. Susceptible reactions to P. pachyrhizi resulted in tan-colored lesions containing 1 to 14 uredinia varying greatly in size within individual lesions. In contrast, on these same genotypes at the same time of year, resistance to other P. pachyrhizi isolates was typified by 0 to 6 small uredinia in reddish-brown to dark-brown lesions. Using appropriate rust resistant and rust susceptible genotypes as standards, examination of uredinia 14 days after inoculation allowed quantitative comparisons of sporulation capacities, one measure of susceptibility or resistance to soybean rust. The study verified the presence and ability to detect all known major genes for resistance to soybean rust in the original sources of resistance. It demonstrated that soybean lines derived from the original PI sources, and presumed to possess the resistance genes, in actuality may lack the gene or express an intermediate reaction to the rust pathogen. We suggest that a determination of numbers and sizes of uredinia will detect both major gene and partial resistance to soybean rust.
The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsora pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32 520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and mnl genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonucleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy.
BackgroundPhakopsora pachyrhizi is an obligate fungal pathogen causing Asian soybean rust (ASR). A dual approach was taken to examine the molecular and biochemical processes occurring during the development of appressoria, specialized infection structures by which P. pachyrhizi invades a host plant. Suppression subtractive hybridization (SSH) was utilized to generate a cDNA library enriched for transcripts expressed during appressoria formation. Two-dimensional gel electrophoresis and mass spectroscopy analysis were used to generate a partial proteome of proteins present during appressoria formation.ResultsSequence analysis of 1133 expressed sequence tags (ESTs) revealed 238 non-redundant ESTs, of which 53% had putative identities assigned. Twenty-nine of the non-redundant ESTs were found to be specific to the appressoria-enriched cDNA library, and did not occur in a previously constructed germinated urediniospore cDNA library. Analysis of proteins against a custom database of the appressoria-enriched ESTs plus Basidiomycota EST sequences available from NCBI revealed 256 proteins. Fifty-nine of these proteins were not previously identified in a partial proteome of P. pachyrhizi germinated urediniospores. Genes and proteins identified fell into functional categories of metabolism, cell cycle and DNA processing, protein fate, cellular transport, cellular communication and signal transduction, and cell rescue. However, 38% of ESTs and 24% of proteins matched only to hypothetical proteins of unknown function, or showed no similarity to sequences in the current NCBI database. Three novel Phakopsora genes were identified from the cDNA library along with six potentially rust-specific genes. Protein analysis revealed eight proteins of unknown function, which possessed classic secretion signals. Two of the extracellular proteins are reported as potential effector proteins.ConclusionsSeveral genes and proteins were identified that are expressed in P. pachyrhizi during appressoria formation. Understanding the role that these genes and proteins play in the molecular and biochemical processes in the infection process may provide insight for developing targeted control measures and novel methods of disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.