Women mount more vigorous antibody- and cell-mediated immune responses following either infection or vaccination than men. The incidence of most autoimmune diseases is also higher in women than in men; however, during pregnancy many autoimmune diseases go into remission, only to flare again in the early post-partum period. Successful pregnancy requires that the female immune system tolerate the presence of a semi-allogeneic graft for 9 months. Oral contraceptive use can increase susceptibility to certain genital tract infections and sexually transmitted diseases in women. Moreover, treatment of mice and rats with female sex hormones is required to establish animal models of genital tract Chlamydia, Neisseria and Mycoplasma infection. This review describes what is currently known about the effects of the female sex hormones oestradiol and progesterone on innate and adaptive immune responses in order to provide a framework for understanding these sex differences. Data from both human and animal studies will be reviewed.
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4(+) and CD8(+) T-cells, and B-cells. Numerous factors-including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model-affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.