Lifespan costs to reproduction are common across multiple species, and such costs could potentially arise through a number of mechanisms. In the nematode Caenorhabditis elegans, it has been suggested that part of the lifespan cost to hermaphrodites from mating results from physical damage owing to the act of copulation itself. Here, we examine whether mating damages the surface of the hermaphrodite cuticle via scanning electron microscopy. It is found that mated hermaphrodites suffered delamination of cuticle layers surrounding the vulva, and that the incidence of such damage depends on genetic background. Unmated hermaphrodites demonstrated almost no such damage, even when cultured in soil with potentially abrasive particles. Thus, a consequence of mating for C. elegans hermaphrodites is physical cuticle damage. These experiments did not assess the consequences of cuticle damage for lifespan, and the biological significance of this damage remains unclear. We further discuss our results within the context of recent studies linking the lifespan cost to mating in C. elegans hermaphrodites to male secretions.
Microfibers are one of the most abundant microplastic particle types found in the environment, where they cause negative impacts on organisms and possibly on human health. Microfibers should be included in a wide range of laboratory studies; however, microfibers for scientific studies are not commercially available. Current methods to make microfibers generally create particles with large size ranges and poor precision, and efficient production of particles ≤100 µm is difficult. Laboratory studies of the biological and toxicological effects and chemical interactions of microfibers require uniform, small microfibers in sufficient numbers for environmentally relevant experiments. We developed a novel fiber embedding technique and modified a seminal cryomicrotomy method to produce precise microfibers in quantities suitable for environmentally relevant concentrations. Polyethylene terephthalate (PET) and nylon fibers were strategically wound onto a spindle, embedded in paraffin wax, and sectioned using a standard paraffin microtome. After processing with a suitable organic solvent to remove the wax, microfiber size distributions were assessed. The small microfibers (10–42 µm) were accurate to the target lengths with excellent precision and a production rate ≥13.5 times higher than previous methods. As a proof of application, three lengths of manufactured PET fibers were stained with Nile red and exposed to eastern oyster larvae (Crassostrea virginica) for 24 h. Larvae ingested the smaller fiber lengths (14 and 28 µm), and the Nile red–stained fibers were visible and distinguishable in the guts of the larvae. This experiment was the first to demonstrate ingestion of plastic particles other than microspheres by oyster larvae. The present method facilitates the use of small microfibers in laboratory experiments, allowing for a more complete understanding of microplastic effects in the environment. Environ Toxicol Chem 2022;41:944–953. © 2021 SETAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.