Foods containing provitamin A carotenoids are the primary source of vitamin A in many countries, despite the poor bioavailability of carotenoids. In addition, epidemiologic studies suggest that dietary intake of carotenoids influences the risk for certain types of cancer, cardiovascular disease and other chronic diseases. Although it would be ideal to use humans directly to answer critical questions regarding carotenoid absorption, metabolism and effects on disease progression, appropriate animal models offer many advantages. This paper will review recent progress in the development of animal models with which to study this class of nutrients. Each potential model has strengths and weaknesses. Like humans, gerbils, ferrets and preruminant calves all absorb beta-carotene (betaC) intact, but only gerbils and calves convert betaC to vitamin A with efficiency similar to that of humans. Mice and rats efficiently convert betaC to vitamin A but absorb carotenoids intact only when they are provided in the diet at supraphysiologic levels. Mice, rats and ferrets can be used to study cancer, whereas primates and gerbils are probably more appropriate for studies on biomarkers of heart disease. No one animal model completely mimics human absorption and metabolism of carotenoids; thus the best model must be chosen with consideration of the specific application being studied, characteristics of the model, and the available funding and facilities.
Vitamin A (VA) deficiency is the leading cause of blindness in children in developing countries. Dietary intervention with foods rich in provitamin A carotenoids, such as beta-carotene (betaC), has been suggested as one solution to this problem. The objective of the two studies described in this paper was to examine the utilization of betaC as a source of VA at different stages of VA depletion using the Mongolian gerbil as a model. Male 4- to 5-wk-old Mongolian gerbils were fed powdered betaC-free semipurified diets either with or without VA for 26 d (Study 1), or without VA for 8-10 wk (Study 2). Gerbils were then fed diets with or without VA (20.9 nmol/g diet) and/or betaC [(67.0 micromol/g diet (Study 1) and 145.9 micromol/g diet (Study 2)] for variable periods. Two (Study 1) or three (Study 2) days before termination of the study, 3-4 gerbils per group were dosed orally with 14C-betaC. Tissues were evaluated for VA and betaC content by HPLC. Liver was extracted with and without saponification to evaluate 14C-betaC and 14C-VA content. The results demonstrate the following: 1) the gerbil is an appropriate animal model to study betaC utilization; 2) 20.9 nmol VA/g diet is more than sufficient for this species; 3) the daily VA utilization rate for this species is calculated to be 3.1 microg/100 g body weight; 4) a highly bioavailable source of betaC at a 6:1 weight ratio of betaC:VA is sufficient to reverse marginal VA status in this model; and 5) a highly bioavailable source of betaC fed between a 6:1 and 13:1 weight ratio to VA provides equivalent VA status as preformed VA in Mongolian gerbils.
Current dietary guidelines recommend a decrease in fat intake and an increase in fiber consumption. Decreased bioavailability (BV) of carotenoids is thought to be associated with both of these recommendations. A 2 x 4 factorial design was used to test the effects of dietary fat level at 10 or 30% of total energy and fiber type using no fiber, silica, citrus pectin or oat gum (7 g/100 g) on beta-carotene (betaC) BV in 4- to 5-wk-old Mongolian gerbils. We assessed BV as both accumulation of betaC and bioconversion of betaC to vitamin A (VA) in tissues. A VA- and betaC-deficient diet was fed for 1 wk followed by one of eight isocaloric, semipurified diets supplemented with carrot powder [ approximately 1 microgram betaC, 0.5 microgram alpha-carotene (alphaC)/kJ diet] for 2 wk (n = 12/group). Increasing dietary fat resulted in higher VA (P: = 0.074) and lower betaC (P: = 0.0001) stores in the liver, suggesting that consumption of high fat diets enhances conversion of betaC to VA. The effect of soluble fiber on hepatic VA storage was dependent on fiber type. Consumption of citrus pectin resulted in lower hepatic VA stores and higher hepatic betaC stores compared with all other groups, suggesting less conversion of betaC to VA. In contrast, consumption of oat gum resulted in hepatic VA and betaC stores that were higher (P = 0.012) and lower (P = 0.022), respectively, than those of citrus pectin-fed gerbils. The level of dietary fat consumed with soluble fiber had no interactive effects on hepatic VA, betaC or alphaC stores. Results demonstrate that betaC BV is independently affected by dietary fat level and type of soluble fiber, and suggest that these dietary components modulate postabsorptive conversion of betaC to VA. This study confirms the negative effects of citrus pectin on betaC BV, and suggests that oat gum does not adversely affect betaC BV.
The algae Dunaliella bardawil and Dunaliella salina naturally contain large concentrations of all-trans and 9-cis beta-carotene (betaC). The purpose of this study was to compare the relative serum and tissue accumulation of all-trans and 9-cis betaC in ferrets fed different ratios of all-trans/9-cis betaC derived from two commercial sources, D. bardawil or D. salina (Betatene). Male ferrets (7 wk old) were fed carotene-free, pelleted diets for 27 d. Beginning on d 18, groups of ferrets (n = 6 or 7) received daily, one of six oral supplements varying in ratios of 9-cis and all-trans betaC mixed with approximately 1.0mL of Ensure. Four supplements containing 5.2-8.3 micromol total betaC were prepared from a 20% Betatene preparation, D. bardawil, a high-cis Betatene preparation, and Betatene further enriched in 9-cis betaC with all-trans betaC/9-cis betaC ratios of 2.2, 1.5, 0.6 and 0.4, respectively. Two control supplements, high and low betaC, were prepared from commercial betaC beadlets. The high control supplement had an all-trans/9-cis ratio of 19.0, whereas 9-cis betaC was not detected in the low supplement. On d 27, serum and tissues were obtained for HPLC analysis of betaC and its isomers. Analysis of livers showed that all-trans betaC was the primary isomer present, but 9-cis and other isomers were also detected in all groups. The hepatic all-trans/9-cis ratios were 5.9, 4.9, 2.5, 1.4, 52.2 and47.5, respectively, for the groups listed above. Lower amounts of all-trans and 9-cis betaC were found in kidneys compared with the liver, but ratios of all-trans/9-cis were not different among groups. Only trace amounts of 9-cis betaC were found in serum. These results demonstrate that the algae D. bardawil and D. salina provide a bioavailable source of betaC isomers, but, as in humans, absorption of 9-cis betaC is poor and any 9-cis betaC absorbed is apparently cleared by the liver.
Vitamin A (VA) deficiency remains a serious problem in the world today. Current approaches to preventing or treating VA deficiency, including dietary intervention with provitamin A compounds, rely on the body converting ingested beta-carotene (betaC) to VA. However, it is not known whether betaC that is already in the tissues can be used as a source of VA to prevent deficiency. The objectives of these studies were to determine whether tissue betaC stores are converted to VA when the Mongolian gerbils have low VA status and whether previously fed betaC is retained in the tissues for later conversion to VA. In the first study, gerbils were prefed diets with betaC (20.3 +/- 6.2 nmol/g diet) (+betaC) or without betaC (-betaC), and with VA [2.4 +/- 1.5 nmol/g diet (+betaC diet) or 12.0 +/- 4.2 nmol/g diet (-betaC diet)] for 7 d, and then depleted of both betaC and VA for up to 84 d. On d 0 after the prefeeding period, hepatic betaC stores were 13.3 +/- 9.1 nmol. These stores were significantly lower after 28d of consuming the -VA/-betaC diet (2.16 +/- 1.7 nmol), even though the hepatic VA concentrations did not change. In the second study, the gerbils were prefed a -VA/+betaC diet (74.3 +/- 19. 7 nmol betaC/g diet) for 7 d, and then fed a betaC-free diet either with (7.1 +/- 1.4 nmol/g) or without VA for up to 34 d. Hepatic betaC stores after the 7-d prefeeding period were 38.1 +/- 20.6 nmol, and were significantly higher than after 7d of consuming either a +VA/-betaC (12.4 +/- 10.8 mmol) or -VA/-betaC diet (11.4 +/- 8.0 nmol). The results from both studies suggest that a substantial amount of hepatic betaC is rapidly lost when betaC is eliminated from the diet and therefore is not conserved to meet later VA needs. The presence of VA in the diet (Study 2) did not affect the rate of betaC loss from the serum and tissues. Moreover, no evidence was found that the stored betaC was utilized for VA. The data suggest that there may be two pools of hepatic betaC, one that is lost rapidly and another that is lost more slowly over time, but losses are not affected by VA status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.