The serine/threonine phosphatase calcineurin is an important regulator of calcium-activated intracellular responses in eukaryotic cells. In higher eukaryotes, calcium/ calmodulin-mediated activation of calcineurin facilitates direct dephosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T-cells (NFAT). Recently, controversy has surrounded the role of calcineurin in mediating skeletal muscle cell hypertrophy. Here we examined the ability of calcineurin-deficient mice to undergo skeletal muscle hypertrophic growth following mechanical overload (MOV) stimulation or insulin-like growth factor-1 (IGF-1) stimulation. Two distinct models of calcineurin deficiency were employed: calcineurin A gene-targeted mice, which show a Ϸ50% reduction in total calcineurin, and calcineurin B1-LoxP-targeted mice crossed with a myosin light chain 1f cre knock-in allele, which show a greater than 80% loss of total calcineurin only in skeletal muscle. Calcineurin A؊/؊ and calcineurin B1-LoxP(fl/fl)-MLC-cre mice show essentially no defects in muscle growth in response to IGF-1 treatment or MOV stimulation, although calcineurin A؊/؊ mice show a basal defect in total fiber number in the plantaris and a mild secondary reduction in growth, consistent with a developmental defect in myogenesis. Both groups of genetargeted mice show normal increases in Akt activation following MOV or IGF-1 stimulation. However, overloadmediated fiber-type switching was dramatically impaired in calcineurin B1-LoxP(fl/fl)-MLC-cre mice. NFAT-luciferase reporter transgenic mice failed to show a correlation between IGF-1-or MOV-induced hypertrophy and calcineurin-NFAT-dependent signaling in vivo. We conclude that calcineurin expression is important during myogenesis and fiber-type switching, but not for muscle growth in response to hypertrophic stimuli.
The T-box gene tbx5 is expressed in the developing heart, forelimb, eye, and liver in vertebrate embryos during critical stages of morphogenesis and patterning. In humans, mutations in the TBX5 gene have been associated with Holt-Oram syndrome, which is characterized by developmental anomalies in the heart and forelimbs. In chicken and mouse embryos, tbx5 expression is initiated at the earliest stages of heart formation throughout the heart primordia and is colocalized with other cardiac transcription factors such as nkx-2.5 and GATA4. As the heart differentiates, tbx5 expression is restricted to the posterior sinoatrial segments of the heart, consistent with the timing of atrial chamber determination. The correlation between tbx5 expression and atrial lineage determination was examined in retinoic acid (RA)-treated chicken embryos. tbx5 expression is maintained throughout the hearts of RA-treated embryos under conditions that also expand atrial-specific gene expression. The downstream effects of persistent tbx5 expression in the ventricles were examined directly in transgenic mice. Embryos that express tbx5 driven by a beta-myosin heavy chain promoter throughout the primitive heart tube were generated. Loss of ventricular-specific gene expression and retardation of ventricular chamber morphogenesis were observed in these embryos. These studies provide direct evidence for an essential role for tbx5 in early heart morphogenesis and chamber-specific gene expression.
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.
Experiments were initiated in avian embryos to determine the embryonic expression of calcineurin protein phosphatase isoforms as well as to identify developmental processes affected by inhibition of calcineurin signal transduction. Chicken calcineurin A alpha (CnA␣) and calcineurin A beta (CnA) are differentially expressed in the developing cardiovascular system, including primitive heart tube and valve primordia. Inhibition of calcineurin signaling by cyclosporin A (CsA) treatment in ovo resulted in distinct cardiovascular malformations, depending on the timing and localization of treatment. Initial formation of the heart tube was apparently normal in embryos treated with CsA from embryonic day (E)1 to E2, but hallmarks of heart failure were apparent with treatment from E2 to E3. Vascular defects were apparent in whole embryos treated on either day, but local administration of CsA directly to the forming vessels on E2 did not inhibit blood vessel formation. This observation supports an indirect effect of calcineurin inhibition on angiogenic remodeling as a result of compromised heart development. Together these studies are consistent with multiple roles for calcineurin signaling in the developing cardiovascular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.