The consequences of mastitis in terms of dairy cow behavior are relatively unknown. Future assessment of dairy cow welfare during mastitis will be facilitated by knowledge about the potential of mastitis to induce sickness behavior. Our aim was to examine behavior of dairy cows in the period from 2 d before (d -2 and -1) to 3 d (d 0, 1, and 2) after experimental intramammary challenge with Escherichia coli. Effects of experimentally induced mastitis on behavior were examined in 20 primiparous Danish Holstein-Friesian cows, all 3 to 6 wk after calving and kept in tie stalls. After evening milking on d 0, each cow received an intramammary infusion with 20 to 40 cfu of E. coli in 1 healthy front quarter. Paraclinical and bacteriological examinations were conducted to confirm infection. Half of the cows were subjected to liver and udder biopsies twice during the trial. Behavior was video-recorded on 5 consecutive days, d -2 to +2 after challenge when the cows were not disturbed by humans. The behavior of the animals was compared among all days. Infection with E. coli altered the behavior of the dairy cows. Time spent feeding was lower in the initial 24 h after infection compared with that on the other days (16.6±1.1, 16.5±1.0, 13.2±1.2, 18.1±1.1, and 16.0±0.8% of time for d -2, -1, 0, 1, and 2, respectively). The duration of standing idle increased on d 0 compared with that on the control days and d 1 and 2 (29.4±2.6, 28.0±2.3, 39.1±2.6, 31.4±3.8, and 25.9±2.6% of time for d -2, -1, 0, 1 and 2, respectively). The frequency of self-grooming behavior per hour decreased in the initial 24h compared with that on d -2, -1, and 2 (4.1±0.8, 5.4±1.9, 3.2±0.6, 3.6±0.6, and 4.8±1.0 for d -2, -1, 0, 1, and 2, respectively). Likewise, duration of rumination and frequency of turning the head against the udder decreased in the first days after infection (rumination: 32.2±1.6, 34.8±1.8, 27.9±1.7, 30.0±2.6, and 34.8±1.7% of time; and frequency of turning head: 0.6±0.1, 0.6±0.1, 0.3±0.1, 0.3±0.1, and 0.6±0.1 per hour for d -2, -1, 0, 1 and 2, respectively). The cows subjected to biopsies showed an overall decreased lying time during the entire observation period (36.3±1.5 vs. 46.1±2.2% of time) but not directly related to the period after the biopsies. Dairy cows show classic signs of illness behavior in the hours after intramammary challenge with E. coli. This knowledge can be useful for the development of welfare assessment protocols, early disease detection, and for future work aimed at understanding the behavioral needs of dairy cows suffering from mastitis.
A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha), IL-1beta, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and alpha(1)-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 microg of LPS (n = 8) or NaCl solution (n = 6) in 1 front quarter. Six repeated liver biopsies were collected at -22, 3, 6, 9, 12, and 48 h relative to LPS challenge in 4 LPS-infused cows and 3 NaCl-infused cows. The remaining cows had 3 liver biopsies taken at -22, 9, and 48 h. Production data and clinical signs were recorded and white blood cell counts and somatic cell counts (SCC) were analyzed to investigate the effect of repeated liver biopsies and verify the LPS model. Plasma concentrations of TNF-alpha, SAA3, Hp, and AGP were determined for comparison with the liver expression data. Repeated liver biopsies had no effects on the production data, clinical signs, or APR of dairy cows. Compared with the NaCl-infused cows the LPS-infused cows responded to the LPS treatment by increased body temperature (38.6 +/- 0.1 vs. 39.4 +/- 0.1 degrees C), short-term leukopenia followed by leukocytosis (6.44 +/- 0.4 vs. 5.69 +/- 0.3 x 10(6) cells/mL), an increased SCC (log(10) 2.1 +/- 0.1 vs. log(10) 2.8 +/- 0.1 x 10(3) cells/mL), heart rate (76 +/- 1 vs. 93 +/- 1 beats/min), and respiratory rate (32 +/- 2 vs. 36 +/- 1 breaths/min) in the acute phase of the disease. The LPS treatment upregulated the hepatic expression of TNF-alpha (103 +/- 24 vs. 255 +/- 18 units), IL-1beta (37 +/- 23 vs. 296 +/- 18 units), IL-6 (8 +/- 17 vs. 122 +/- 12 units), and IL-10 (130 +/- 66 vs. 541 +/- 50 units), and SAA3 (64 +/- 36 vs. 128 +/- 28 units) and Hp (9 +/- 82 vs. 762 +/- 65 units) reaching maximum levels at 3 to 6 h and 9 to 12 h postinfusion, respectively. Plasma concentrations of TNF-alpha (nondetectable vs. 1.9 +/- 0.3 ng/mL), SAA (19.8 +/- 19.4 vs. 149.7 +/- 15.5 microg/mL) and Hp (71.4 +/- 143.7 vs. 1,013.8 +/- 111.5 microg/mL) were elevated in the LPS-infused cows at 4 to 12 h, 8 to 120 h, and 24 to 120 h postinfusion, respectively. The hepatic expression of AGP and the AGP plasma concentration remained unaltered in LPS-induced cows. In conclusion, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows.
BackgroundBovine mastitis is one of the most costly and prevalent diseases affecting dairy cows worldwide. In order to develop new strategies to prevent Escherichia coli-induced mastitis, a detailed understanding of the molecular mechanisms underlying the host immune response to an E. coli infection is necessary. To this end, we performed a global gene-expression analysis of mammary gland tissue collected from dairy cows that had been exposed to a controlled E. coli infection. Biopsy samples of healthy and infected utter tissue were collected at T = 24 h post-infection (p.i.) and at T = 192 h p.i. to represent the acute phase response (APR) and chronic stage, respectively. Differentially expressed (DE) genes for each stage were analyzed and the DE genes detected at T = 24 h were also compared to data collected from two previous E. coli mastitis studies that were carried out on post mortem tissue.ResultsNine-hundred-eighty-two transcripts were found to be differentially expressed in infected tissue at T = 24 (P < 0.05). Up-regulated transcripts (699) were largely associated with immune response functions, while the down-regulated transcripts (229) were principally involved in fat metabolism. At T = 192 h, all of the up-regulated transcripts were associated with tissue healing processes. Comparison of T = 24 h DE genes detected in the three E. coli mastitis studies revealed 248 were common and mainly involved immune response functions. KEGG pathway analysis indicated that these genes were involved in 12 pathways related to the pro-inflammatory response and APR, but also identified significant representation of two unexpected pathways: natural killer cell-mediated cytotoxicity pathway (KEGG04650) and the Rig-I-like receptor signalling pathway (KEGG04622).ConclusionsIn E. coli-induced mastitis, infected mammary gland tissue was found to significantly up-regulate expression of genes related to the immune response and down-regulate genes related to fat metabolism. Up to 25% of the DE immune response genes common to the three E. coli mastitis studies at T = 24 h were independent of E. coli strain and dose, cow lactation stage and number, tissue collection method and gene analysis method used. Hence, these DE genes likely represent important mediators of the local APR against E. coli in the mammary gland.
Intramammary infusion of lipopolysaccharide (LPS) in cows induces udder inflammation that partly simulates mastitis caused by infection with Gram-negative bacteria. We have used this animal model to characterize the quantitiative response in the milk proteome during the time course before and immediately after the LPS challenge. Milk samples from three healthy cows collected 3 h before the LPS challenge were compared with milk samples collected 4 and 7 h after the LPS challenge, making it possible to describe the inflammatory response of individual cows. Quantitative protein profiles were obtained for 80 milk proteins, of which 49 profiles changed significantly for the three cows during LPS challenge. New information obtained in this study includes the quantified increase of apolipoproteins and other anti-inflammatory proteins in milk, which are important for the cow's ability to balance the immune response, and the upregulation of both complement C3 and C4 indicates that more than one complement pathway could be activated during LPS-induced mastitis. In the future, this analytical approach may provide valuable information about the differences in the ability of individual cows to resist and recover from mastitis.
Background: Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.