DNA is the accepted target for cisplatin, but recent evidence has shed doubt on DNA synthesis as the critical process. L1210/0 cells incubated for 2 hours with cisplatin progress to the G2 phase of the cell cycle and are arrested there for several days. They then either progress in the cell cycle or die. In cells that eventually die, total transcription, polyadenylated [poly(A)+] RNA synthesis, and protein synthesis were markedly inhibited only after 48 hours. Nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP) levels decreased after 3 days. Cell membrane integrity was lost after 4 days. These results demonstrate that cells can be lethally damaged, yet continue to undergo apparently normal metabolic activities for several days. In a previous study, DNA double-strand breaks were detected after 1 day. We now show that by 2 days, breaks are visible as fragmentation in the nucleosome spacer regions of chromatin. This type of damage is consistent with cell death occurring by the process of apoptosis. Cell shrinkage and morphology were also consistent with this type of cell death. The slow cell death reported here appears to occur at the G2/M transition and may involve events that normally occur at this stage of the cell cycle. These results demonstrate the importance of DNA degradation as an early and possibly essential step in cell death.
The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.