A significant extension to the classical least-squares (CLS) algorithm called concentration residual augmented CLS (CRACLS) has been developed. Previously, unmodeled sources of spectral variation have rendered CLS models ineffective for most types of problems, but with the new CRACLS algorithm, CLS-type models can be applied to a significantly wider range of applications. This new quantitative multivariate spectral analysis algorithm iteratively augments the calibration matrix of reference concentrations with concentration residuals estimated during CLS prediction. Because these residuals represent linear combinations of the unmodeled spectrally active component concentrations, the effects of these components are removed from the calibration of the analytes of interest. This iterative process allows the development of a CLS-type calibration model comparable in prediction ability to implicit multivariate calibration methods such as partial least squares (PLS) even when unmodeled spectrally active components are present in the calibration sample spectra. In addition, CRACLS retains the improved qualitative spectral information of the CLS algorithm relative to PLS. More importantly, CRACLS provides a model compatible with the recently presented prediction-augmented CLS (PACLS) method. The CRACLS/PACLS combination generates an adaptable model that can achieve excellent prediction ability for samples of unknown composition that contain unmodeled sources of spectral variation. The CRACLS algorithm is demonstrated with both simulated and real data derived from a system of dilute aqueous solutions containing glucose, ethanol, and urea. The simulated data demonstrate the effectiveness of the new algorithm and help elucidate the principles behind the method. Using experimental data, we compare the prediction abilities of CRACLS and PLS during cross-validated calibration. In combination with PACLS, the CRACLS predictions are comparable to PLS for the prediction of the glucose, ethanol, and urea components for validation samples collected when significant instrument drift was present. However, the PLS predictions required recalibration using nonstandard cross-validated rotations while CRACLS/PACLS was rapidly updated during prediction without the need for time-consuming cross-validated recalibration. The CRACLS/PACLS algorithm provides a more general approach to removing the detrimental effects of unmodeled components.
Our newly developed prediction-augmented classical least-squares/partial least-squares (PACLS/PLS) hybrid algorithm can correct for the presence of unmodeled sources of spectral variation such as instrument drift by explicitly incorporating known or empirically derived information about the unmodeled spectral variation. We have tested the ability of the new hybrid algorithm to maintain a multivariate calibration in the presence of instrument drift using a near-infrared (NIR) spectrometer (7500–11 000 cm−1) to quantitate dilute aqueous solutions containing glucose, ethanol, and urea. The spectral variations required to update the multivariate models for both short- and long-term drift were obtained using a single representative midpoint sample whose spectrum was repeatedly measured during collection of calibration data and during collection of separate validation sample spectra on three subsequent days. The performance of the PACLS/PLS model for maintaining a calibration was compared to PLS with subset recalibration, a method that has previously been applied to maintenance and transfer of calibration. Without drift corrections, both PACLS/PLS and PLS had poor predictive ability on sample spectra collected on subsequent days. Unlike previous maintenance of calibration studies that corrected for long-term drift only, the PACLS/PLS and PLS models demonstrated the best predictive abilities when short-term drift was also corrected. The PACLS/PLS hybrid model outperformed PLS with subset recalibration for near real-time predictions when instrument drift was determined from the repeat samples closest in time to the measurement of the unknown. Near real-time standard errors of prediction (SEPs) for the hybrid model were comparable to the cross-validated SEPs obtained with the original calibration model.
Carbon cluster anions have been formed by a combination laser ablation/plasma generation method and then deposited in argon matrices and studied via Fourier transform infrared spectroscopy. In this paper a full isotopic study of the C3 - anionic cluster is reported. All six isotopomeric bands of the ν3 antisymmetric stretching mode at 1721.8 cm-1 (all 12C isotopomer) have been observed and used together with a normal coordinate calculation to deduce that C3 - in Ar matrices is linear. This is in agreement with previous high-level ab initio calculations and with new density functional theory (DFT) and ab initio (MP2) results. Frequency shifts for all six C3 - isotopomers calculated by DFT and MP2 approaches match the observed shifts very well. Finally, evidence is presented that the C3 - anionic clusters are formed by electron capture and not by fragment aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.