Aim Climate change and other anthropogenic global change drivers act in complex, mutually exacerbating ways to alter the abundance and distribution of species. In South Africa, pied crows Corvus albus have increased in numbers and range in recent decades. Popular opinion links these changes to urbanisation and infrastructure development, but there has been no empirical test of this idea. We aimed to clarify the drivers of pied crow population changes in South Africa.Location South Africa.Methods We used publicly available long-term datasets, the Southern African Bird Atlas Project and University of Delaware Gridded Climate Database, and spatial data from government bodies, to assess relationships between pied crow population and range changes, land use, infrastructure, urbanisation and climate change.Results Pied crow numbers have increased significantly in the past three decades, but rate of increase varied geographically, with crows declining in the northeast and increasing in the south-west of South Africa. Pied crow population changes were strongly correlated with climate change. Crows have benefited most from climate warming in the shrubland biomes of south-western South Africa. Pied crows are tree nesters, and within these shrublands, there is a strong positive relationship between the rate of population increase and the density of powerline infrastructure, which may facilitate pied crows' increase by providing nesting sites.Main conclusions Pied crow numbers have increased in response to climate warming, with their spread facilitated by electrical infrastructure in south-western South Africa, providing a clear example of compound influence of multiple global change drivers promoting a significant change in species range and reporting rate. Pied crows are generalist predators and there is popular concern about their ecological impact in areas where increases have occurred. We highlight the importance of understanding the ecosystem-level implications of increased numbers of pied crows in South Africa's shrubland biomes.
Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and the related desiccation-sensitive cereal Eragrostis tef to identify changes underlying desiccation tolerance. These analyses were extended across C4 grasses and cereals to identify broader evolutionary conservation and divergence. Across diverse genomic datasets, we identified changes in chromatin architecture, methylation, gene duplications, and expression dynamics related to desiccation in E. nindensis. It was previously hypothesized that transcriptional rewiring of seed desiccation pathways confers vegetative desiccation tolerance. Here, we demonstrate that the majority of seeddehydration-related genes showed similar expression patterns in leaves of both desiccation-tolerant and -sensitive species. However, we identified a small set of seed-related orthologs with expression specific to desiccation-tolerant species. This supports a broad role for seed-related genes, where many are involved in typical drought responses, with only a small subset of crucial genes specifically induced in desiccation-tolerant plants.
Corvids are often viewed as efficient predators capable of limiting prey species populations. Despite this widely held belief, a comprehensive review quantifying the effect of corvids on the demography of prey species is lacking. We examine the impacts of crows, ravens Corvus spp. and Eurasian Magpies Pica pica on the population parameters of other bird species. We summarize results from 42 studies, which included 326 explicit evaluations of relationships between a corvid and a potential prey species. Population parameters of studied prey species were categorized as abundance-related (numbers, nest density) or productivity-related (nest success, brood size). Information from both experimental removal studies and correlative studies was examined. Combining all studies, no negative influence of corvids on either abundance or productivity of prey species was found in 81% of cases. Negative impacts were significantly more likely in cases examining productivity rather than abundance (46 vs. 10%). Experimental studies that removed only corvid species were significantly less likely to show a positive impact on productivity than those removing corvids alongside other predators (16 vs. 60%). This suggests that the impact of corvids is smaller than that of other predators, or that compensatory predation occurs. The impact of corvids was similar between diverse avian groups (such as gamebirds, passerines and waders; or ground-nesting and other species). Crows were found to be significantly more likely to have a negative impact on prey species productivity than were Magpies (62 vs. 12%), but no differences were found in relation to prey abundance. We conclude that while corvids can have a negative impact on bird species, their impact is small overall, and nearly five times more frequent for productivity than for abundance. These results suggest that in most cases bird populations are unlikely to be limited by corvid predation and that conservation measures may generally be better targeted at other limiting factors. However, negative impacts were found in a minority of cases, and those may require further investigation to develop management tools to mitigate such impacts where they are of economic or conservation concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.