The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC 50 values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Ka, PI3Kb, PI3Kg, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling.
These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.
This paper reports an in vivo evaluation of toxicology and biodistribution of a highly anisotropic Au nanoconstruct composed of a gold nanostar (AuNS) core and a ligand shell of a G-quadruplex DNA aptamer AS1411 (Apt) supporting both targeting and therapy capabilities. We examined the toxicity of the nanoconstructs (Apt-AuNS) at four different injected concentrations; at the highest dose tested (48 mg/kg), maximal tolerated dose was not reached. Complete assessment of clinical pathology showed no apparent signs of acute toxicity. Interestingly, the nanoconstructs circulated longer in female rats compared to male rats. In two different tumor models, the biodistribution of Apt-AuNS, especially tumor accumulation, was different. Accumulation of Apt-AuNS was 5 times higher in invasive breast cancer tumors compared to fibrosarcoma tumors. These results provide insight on identifying a tumor model and nanoconstruct for in vivo studies, especially when an in vitro therapeutic response is observed in multiple cancer cell lines.
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper “Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs“ (Sugahara et al., 2010). Here we report the results of those experiments. We found that coadministration with iRGD peptide did not have an impact on permeability of the chemotherapeutic agent doxorubicin (DOX) in a xenograft model of prostate cancer, whereas the original study reported that it increased the penetrance of this cancer drug (Figure 2B; Sugahara et al., 2010). Further, in mice bearing orthotopic 22Rv1 human prostate tumors, we did not find a statistically significant difference in tumor weight for mice treated with DOX and iRGD compared to DOX alone, whereas the original study reported a decrease in tumor weight when DOX was coadministered with iRGD (Figure 2C; Sugahara et al., 2010). In addition, we did not find a statistically significant difference in TUNEL staining in tumor tissue between mice treated with DOX and iRGD compared to DOX alone, while the original study reported an increase in TUNEL positive staining with iRGD coadministration (Figure 2D; Sugahara et al., 2010). Similar to the original study (Supplemental Figure 9A; Sugahara et al., 2010), we did not observe an impact on mouse body weight with DOX and iRGD treatment. Finally, we report meta-analyses for each result.DOI:
http://dx.doi.org/10.7554/eLife.17584.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.