Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Previous studies on the regulation of polyadenylation of the immunoglobulin (Ig) heavy-chain pre-mRNA argued for trans-acting modifiers of the cleavage-polyadenylation reaction operating differentially during B-cell developmental stages. Using four complementary approaches, we demonstrate that a change in the level of hnRNP F is an important determinant in the regulated use of alternative polyadenylation sites between memory and plasma stage B cells. First, by Western analyses of cellular proteins, the ratio of hnRNP F to H or H was found to be higher in memory B cells than in plasma cells. In memory B cells the activity of CstF-64 binding to pre-mRNA, but not its amount, was reduced. Second, examination of the complexes formed on input pre-mRNA in nuclear extracts revealed large assemblages containing hnRNP H, H, and F but deficient in CstF-64 in memory B-cell extracts but not in plasma cells. Formation of these large complexes is dependent on the region downstream of the AAUAAA in pre-mRNA, suggesting that CstF-64 and the hnRNPs compete for a similar region. Third, using a recombinant protein we showed that hnRNP F could bind to the region downstream of a poly(A) site, block CstF-64 association with RNA, and inhibit the cleavage reaction. Fourth, overexpression of recombinant hnRNP F in plasma cells resulted in a decrease in the endogenous Ig heavychain mRNA secretory form-to-membrane ratio. These results demonstrate that mammalian hnRNP F can act as a negative regulator in the pre-mRNA cleavage reaction and that increased expression of F in memory B cells contributes to the suppression of the Ig heavy-chain secretory poly(A) site.The immunoglobulin (Ig) heavy-chain transcription unit and the two heavy-chain mRNAs it encodes are shown in Fig. 1A (reviewed in reference 8). In mature and memory B cells the promoter-distal membrane-specific poly(A) site (mb-pA) is selected and splicing to the downstream M1 exon occurs via a 5Ј splice site within the coding region of CH4. The secretoryspecies-specific poly(A) (sec-pA) and mb-pA sites are used with equal frequency in mature and memory B cells and their tumor analogs, lymphoma cells. Plasma cells are terminally differentiated B cells; myeloma cells are their tumor counterparts, which accurately reflect their pattern of Ig gene expression. In plasma and myeloma lines polyadenylation takes place preferentially at the weaker, promoter-proximal sec-pA site, precluding the splicing to membrane-specific exons; the sec-pA site is used up to 100-fold more often than the mb-pA site in plasma cells (23). Polyadenylation at the promoter-proximal secretory site and splicing of CH4 to M1 are mutually exclusive events; consequently, it is the balance between these two that determines the final ratio of secretory-form to membrane mRNA (sec-to-mb mRNA ratio) (26). Previous experiments demonstrated that regulation of Ig heavy-chain mRNA production occurs primarily at the level of polyadenylation, not message stability, transcription termination, or splicing efficiency (14-16, 19, 2...
Immunoglobulin secretion is modulated by a competition between use of a weak promoter proximal poly(A) site and a non-consensus splice site in the last secretory-specific exon of the heavy chain pre-mRNA. RNA polymerase II transcription elongation factor ELL2, induced in plasma cells, enhanced both polyadenylation and exon skipping with the Igh gene and reporter constructs. Lowering ELL2 expression by hnRNP F transfection or siRNA reduced secretory-specific forms of IgH mRNA. ELL2 and polyadenylation factor CstF-64 co-tracked with RNA polymerase II across the Igh mu and gamma gene segments; association of both factors was blocked by ELL2 siRNA. Thus loading of ELL2 and CstF-64 on RNAP-II was linked, causative for enhanced proximal poly(A) site use and necessary for IgH mRNA processing.
Auxiliary factors likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We previously identified an auxiliary factor, hnRNP H/H', which stimulates 3'-end processing through an interaction with sequences downstream of the core elements of the SV40 late polyadenylation signal. Using in vitro reconstitution assays we have demonstrated that hnRNP H/H' can stimulate processing of two additional model polyadenylation signals by binding at similar relative downstream locations but with significantly different affinities. A short tract of G residues was determined to be a common property of all three hnRNP H/H' binding sites. A survey of mammalian polyadenylation signals identified potential G-rich hnRNP H/H' binding sites at similar downstream locations in approximately 34% of these signals. All of the novel G-rich elements tested were found to bind hnRNP H/H' protein and the processing of selected signals identified in the survey was stimulated by the protein both in vivo and in vitro. Downstream G-rich tracts, therefore, are a common auxiliary element in mammalian polyadenylation signals. Sequences capable of binding hnRNP H protein with varying affinities may play a role in determining the processing efficiency of a significant number of mammalian polyadenylation signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.