Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Protonated states of the nitrogenase
active site are mechanistically
significant since substrate reduction is invariably accompanied by
proton uptake. We report the low pH characterization by X-ray crystallography
and EPR spectroscopy of the nitrogenase molybdenum iron (MoFe) proteins
from two phylogenetically distinct nitrogenases (Azotobacter
vinelandii, Av, and Clostridium pasteurianum, Cp) at pHs between 4.5 and 8. X-ray data at pHs of 4.5–6
reveal the repositioning of side chains along one side of the FeMo-cofactor,
and the corresponding EPR data shows a new S = 3/2
spin system with spectral features similar to a state previously observed
during catalytic turnover. The structural changes suggest that FeMo-cofactor
belt sulfurs S3A or S5A are potential protonation sites. Notably,
the observed structural and electronic low pH changes are correlated
and reversible. The detailed structural rearrangements differ between
the two MoFe proteins, which may reflect differences in potential
protonation sites at the active site among nitrogenase species. These
observations emphasize the benefits of investigating multiple nitrogenase
species. Our experimental data suggest that reversible protonation
of the resting state is likely occurring, and we term this state “E0H+”, following the Lowe–Thorneley
naming scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.