Elemental sulfur (S(0)) is an important intermediate of the sulfur cycle and is generated by chemical and biological sulfide oxidation. Raman spectromicroscopy can be applied to environmental samples for the detection of S(0), as a practical non-destructive micron-scale method for use on wet material and living cells. Technical advances in filter materials enable the acquisition of ultra-low frequency (ULF) Raman measurements in the 10–100 cm
−1
range using a single-stage spectrometer. Here we demonstrate the potency of ULF Raman spectromicroscopy to harness the external vibrational modes of previously unrecognized S(0) structures present in environmental samples. We investigate the chemical and structural nature of intracellular S(0) granules stored within environmental mats of sulfur-oxidizing γ-Proteobacteria (
Thiothrix)
.
In vivo
intracellular ULF scans indicate the presence of amorphous cyclooctasulfur (S
8
), clarifying enduring uncertainties regarding the content of microbial sulfur storage globules. Raman scattering of extracellular sulfur clusters in
Thiothrix
mats furthermore reveals an unexpected abundance of metastable β-S
8
and γ-S
8
, in addition to the stable α-S
8
allotrope. We propose ULF Raman spectroscopy as a powerful method for the micron-scale determination of S(0) structure in natural and laboratory systems, with a promising potential to shine new light on environmental microbial and chemical sulfur cycling mechanisms.
Sedimentary rock deposits provide the best records of (bio)geochemical cycles in the ancient ocean. Studies of these sedimentary archives show that greenalite, an Fe(II) silicate with low levels of Fe(III), was an early chemical precipitate from the Archean ocean. To better understand the formation of greenalite, we explored controls on iron silicate precipitation through experiments in simulated Archean seawater under exclusively ferrous conditions or supplemented with low Fe(III). Our results confirm a pH-driven process promoting the precipitation of iron-rich silicate phases, and they also reveal an important mechanism in which minor concentrations of Fe(III) promote the precipitation of well-ordered greenalite among other phases. This discovery of an Fe(III)-triggering iron silicate formation process suggests that Archean greenalite could represent signals of iron oxidation reactions, potentially mediated by life, in circumneutral ancient seawater.
The Precambrian rock record contains numerous examples of microscopic organic filaments and spheres, commonly interpreted as fossil microorganisms. Microfossils are among the oldest traces of life on Earth, making their correct identification crucial to our understanding of early evolution. Yet, spherical and filamentous microscopic objects composed of organic carbon and sulfur can form in the abiogenic reaction of sulfide with organic compounds. Termed organic biomorphs, these objects form under geochemical conditions relevant to the sulfidic environments of early Earth. Furthermore, they adopt a diversity of morphologies that closely mimic a number of microfossil examples from the Precambrian record. Here, we tested the potential for organic biomorphs to be preserved in cherts; i.e., siliceous rocks hosting abundant microbial fossils. We performed experimental silicification of the biomorphs along with the sulfur bacterium Thiothrix. We show that the original morphologies of the biomorphs are well preserved through encrustation by nano-colloidal silica, while the shapes of Thiothrix cells degrade. Sulfur diffuses from the interior of both biomorphs and Thiothrix during silicification, leaving behind empty organic envelopes. Although the organic composition of the biomorphs differs from that of Thiothrix cells, both types of objects present similar nitrogen/carbon ratios after silicification. During silicification, sulfur accumulates along the organic envelopes of the biomorphs, which may promote sulfurization and preservation through diagenesis. Organic biomorphs possessing morphological and chemical characteristics of microfossils may thus be an important component in Precambrian cherts, challenging our understanding of the early life record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.