Loss of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun-Nterminal-kinases (JNK) have been implicated in stressinduced apoptosis, but may also contribute to survival signaling. Here we show that CD95-induced apoptosis is augmented by the JNK inhibitor SP600125 and small interfering RNA directed against JNK1/2. SP600125 potently inhibited methyl methane sulfonate-induced phosphorylation of c-Jun, but had minimal effect on apoptosis alone. In contrast, it strongly enhanced CD95-mediated apoptosis in six of eight tumor cell lines and led to a G 2 /M phase arrest in all cell lines. SP600125 enhanced cleavage of caspase 3 and caspase 8, the most upstream caspase in the CD95 pathway. JNK inhibition up-regulates p53 and its target genes p21Cip1/Waf1 and CD95. However, although HCT116 p53 À/À cells and p21 +/+ cells were less sensitive to CD95 stimulation than their p53 +/+ and p21 À/À counterparts, p53and p21 were not involved in the JNK-mediated effect. JunD, which was described to be protective in tumor necrosis factor-induced apoptosis, was not regulated by JNK inhibition on the protein level. When transcription was blocked by actinomycin D, JNK inhibition still enhanced apoptosis to a comparable extent. We conclude that JNK inhibition has antitumor activity by inducing growth arrest and enhancing CD95-mediated apoptosis by a transcription-independent mechanism. (Cancer Res 2005; 65(15): 6780-8)
Suramin is a polysulfonated derivative of urea and has been widely used both to treat infections and as a chemotherapeutic drug. Suramin has been shown to inhibit growth factor signaling pathways; however, its effect on apoptosis is unknown. Here we show that suramin inhibits apoptosis induced through death receptors in hepatoma and lymphoma cells. It also inhibits the proapoptotic effect of chemotherapeutic drugs. The antiapoptotic mechanism is specific to cell type and is caused by reduced activation, but not altered composition, of the death-inducing signaling complex (DISC), and by inhibition of the initiator caspases 8, 9 and 10. Suramin also shows similar effects in in vivo models: apoptotic liver damage induced by CD95 stimulation and endotoxic shock mediated by tumor-necrosis factor (TNF) are inhibited in mice, but necrotic liver damage is not inhibited in a rat model of liver transplantation. Thus, the antiapoptotic property of suramin in the liver may be therapeutically exploited.
Surgery of the chest wall is potentially required to cover large defects after removal of malignant tumours. Usually, inert and non-degradable Gore-Tex serves to replace the missing tissue. However, novel biodegradable materials combined with stem cells are available that stimulate the healing. Based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) and pure PLGA, a dual layer biodegradable hybrid nanocomposite was generated. Mouse adipose-derived stem cells were cultered on electrospun disks (ASCs of C57BL/6), and biomechanical tests were performed. The cell-seeded scaffolds were engrafted in C57BL/LY5.1 mice to serve as a chest wall substitute. Cell invasion into the bi-layered material, extent of CD45 + cells, inflammatory response, neo-vascularization and ECM composition were determined at 1 and 2 months post-surgery, respectively. The bi-layered hybrid nanocomposite was stable after a 2-week in vitro culture, in contrast to PLGA/aCaP without a PLGA layer. There was a complete biointegration and good vascularization in vivo . The presence of ASCs attracted more CD45 + cells (hematopoietic origin) compared to cell-free scaffolds. Inflammatory reaction was similar for both groups (±ASCs) at 8 weeks. A bi-layered hybrid nanocomposite fabricated of electrospun PLGA/aCaP and a reinforcing layer of pristine PLGA is an ideal scaffold for chest wall reconstruction. It is stable and allows a proper host tissue integration. If ASCs are seeded, they attract more CD45 + cells, supporting the regeneration process.
Chest wall repair can be necessary after tumor resection or chest injury. In order to cover or replace chest wall defects, autologous tissue or different synthetic materials are commonly used, among them the semi-rigid gold standard Gore-Tex® and prolene meshes. Synthetic tissues include composite materials with an organic and an inorganic component. On the basis of previously reported hybrid nanocomposite poly-lactic-co-glycolic acid amorphous calcium phosphate nanocomposite (PLGA/aCaP), a CuO component was incorporated to yield (60%/35%/5%). This graft was tested in vitro by seeding with murine adipose-derived stem cells (ASCs) for cell attachment and migration. The graft was compared to PLGA/CaCO3 and PLGA/hydroxyapatite, each providing the inorganic phase as nanoparticles. Further characterization of the graft was performed using scanning electron microscopy. Furthermore, PLGA/aCaP/CuO was implanted as a chest wall graft in mice. After 4 weeks, total cell density, graft integration, extracellular matrix components such as fibronectin and collagen I, the cellular inflammatory response (macrophages, F4/80 and lymphocytes, CD3) as well as vascularization (CD31) were quantitatively assessed. The nanocomposite PLGA/aCaP/CuO showed a good cell attachment and cells migrated well into the pores of the electrospun meshes. Cell densities did not differ between PLGA/aCaP/CuO and PLGA/CaCO3 or PLGA/hydroxyapatite, respectively. When applied as a chest wall graft, adequate stability for suturing into the thoracic wall could be achieved. Four weeks post-implantation, there was an excellent tissue integration without relevant fibrotic changes and a predominating collagen I matrix deposition within the graft. Slightly increased inflammation, reflected by increased infiltration of macrophages could be observed. Vascularization of the graft was significantly enhanced when compared with PLGA/aCaP (no CuO). We conclude that the hybrid nanocomposite PLGA/aCaP/CuO is a viable option to be used as a chest wall graft. Surgical implantation of the material is feasible and provides stability and enough flexibility. Proper tissue integration and an excellent vascularization are characteristics of this biodegradable material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.