Background—
Noninvasive detection of deep venous thrombi and subsequent pulmonary thromboembolism is a serious medical challenge, since both incidences are difficult to identify by conventional ultrasound techniques.
Methods and Results—
Here, we report a novel technique for the sensitive and specific identification of developing thrombi using background-free
19
F magnetic resonance imaging, together with α2-antiplasmin peptide (α2
AP
)–targeted perfluorocarbon nanoemulsions (PFCs) as contrast agent, which is cross-linked to fibrin by active factor XIII. Ligand functionality was ensured by mild coupling conditions using the sterol-based postinsertion technique. Developing thrombi with a diameter <0.8 mm could be visualized unequivocally in the murine inferior vena cava as hot spots in vivo by simultaneous acquisition of anatomic matching
1
H and
19
F magnetic resonance images at 9.4 T with both excellent signal-to-noise and contrast-to-noise ratios (71±22 and 17±5, respectively). Furthermore, α2
AP
-PFCs could be successfully applied for the diagnosis of experimentally induced pulmonary thromboembolism. In line with the reported half-life of factor XIIIa, application of α2
AP
-PFCs >60 minutes after thrombus induction no longer resulted in detectable
19
F magnetic resonance imaging signals. Corresponding results were obtained in ex vivo generated human clots. Thus, α2
AP
-PFCs can visualize freshly developed thrombi that might still be susceptible to pharmacological intervention.
Conclusions—
Our results demonstrate that
1
H/
19
F magnetic resonance imaging, together with α2
AP
-PFCs, is a sensitive, noninvasive technique for the diagnosis of acute deep venous thrombi and pulmonary thromboemboli. Furthermore, ligand coupling by the sterol-based postinsertion technique represents a unique platform for the specific targeting of PFCs for in vivo
19
F magnetic resonance imaging.
This work demonstrates that CD73 on T cells plays a crucial role in the cardiac wound healing process after myocardial infarction. The underlying mechanism involves a profound increase in the hydrolysis of ATP/NAD and AMP, resulting primarily from the upregulation of pyrophosphatases and CD73. We also define AR/AR-mediated autacoid feedback inhibition of proinflammatory/profibrotic cytokines by T cell-derived CD73.
Our data provide first evidence that CD73 on T cells plays an important anti-inflammatory role in TAC-induced heart failure, which is associated with antifibrotic activity and reduced production of proinflammatory cytokines most likely by activation of the adenosine A2a receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.