High-resolution terahertz absorption spectra (0.06-3 THz) have been obtained at 4.2 K for three crystalline forms of trialanine [H2+-(Ala)3-O-]. The crystal structures differ in their beta-sheet forms (parallel vs antiparallel) and in their water composition (hydrated vs dehydrated antiparallel beta-sheet). The spectra are nearly vibrationally resolved, with little absorption below 1 THz. In sharp contrast to observations made in the mid-IR region, the spectral patterns of all three forms are qualitatively different, illustrating the extreme sensitivity to changes in the intermolecular hydrogen-bonding networks that stabilize peptide crystals. Predictions obtained from a classical force field model (CHARMM) and density functional theory (DFT/PW91) for periodic solids are compared with the X-ray structural data and the terahertz absorption spectra. In general, the results for the parallel beta-sheet are in better agreement with experiment than those for the antiparallel beta-sheet. For all three structures, however, most hydrogen bond distances are underestimated at both levels of theory, and the predicted absorption features are significantly red-shifted for the two antiparallel beta-sheet structures. Moreover, the nuclear motions predicted at the two levels of theory are qualitatively different. These results indicate that the PW91 functional is not sufficient to treat the weak intersheet hydrogen bonding present in the different beta-sheet forms and strongly suggest the need for improved force field models that include three-atom hydrogen-bonding terms for periodic solids.
We report what we believe to be the first systematic study of Doppler-free, nonlinear absorption by use of cavity ringdown spectroscopy. We have developed a variant of cavity ringdown spectroscopy for the mid-infrared region between 9 and 11 microm, exploiting the intracavity power buildup that is possible with continuous-wave lasers. The infrared source consists of a continuous-wave CO2 laser with 1-mW tunable infrared sidebands that couple into a high-finesse stable resonator. We tune the sideband frequencies to observe a saturated, Doppler-free Lamb dip in the nu7, 11(1,10) <-- 11(2,10) rovibrational transition of ethylene (C2H4). Power studies of the Lamb dip are presented to examine the intracavity effects of saturation on the Lamb-dip linewidth, the peak depth, and the broadband absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.