Natural killer (NK) cells lead immune surveillance against cancer and early elimination of small tumors. Owing to their ability to engage tumor targets without the need of specific antigen, the therapeutic potential of NK cells has been extensively explored in hematological malignancies. In solid tumors, however, their role in the clinical arena remains poorly exploited despite a broad accumulation of preclinical data. In this article, we review our current knowledge of NK cells’ biology, and highlight the challenges facing NK cell antitumor strategies in solid tumors. We further summarize the abundant preclinical attempts at overcoming these challenges, present past and ongoing clinical trial data and finally discuss the potential impact of novel insights on the development of NK cell-based therapies.
Acknowledging the correlation of response to therapy based on the "targeting the target" concept, FDA demonstrated confidence in precision therapy approaches by approving FoundationOne®CDx test in late 2017 as an indicated diagnostic for cancer patients. More than 100 precision therapies involving both solid and liquid malignancy have since been approved by FDA as indicated therapy in a variety of cancer types as related to correlated molecular target. We provide clinical justification of consideration for precision therapy guided by matched molecular target, specifically focusing on PI3K/mTOR/AKT, BRCA, CDK4/6, EGFR and BRAF V600E for advanced disease cancer patients who previously failed optimal NCCN guideline directed standard of care.
Anemia in cancer patients is associated with poor quality of life, reduced response to therapy, and decreased overall survival. We describe a case of a 56-year old woman with advanced metastatic non-small cell lung carcinoma who demonstrated marked response to a novel combinational immunotherapy approach involving a long-acting PEGylated construct of recombinant human Interleukin-10 with Nivolumab, an anti-PD-L1 checkpoint inhibitor. While on treatment, the patient developed severe anemia and hyper-ferritinemia requiring RBC transfusion support. Here we discuss a possible novel immune mechanism of IL10-mediated anemia in correlation with tumor response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.