Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.
Extracorporeal membrane oxygenation (ECMO) is often used in the management of COVID-19-related severe respiratory failure. We report the first case of a patient with COVID-19-related ARDS on ECMO support who developed symptoms of heparin-induced thrombocytopenia (HIT) in the absence of heparin therapy. A low platelet count of 61 G/L was accompanied by the presence of circulating HIT antibodies 12 days after ECMO initiation. Replacement of the ECMO system including cannulas resulted in the normalization of the platelet count. However, the clinical situation did not improve, and the patient died 9 days later. Careful consideration of anticoagulant therapy and ECMO circuit, as well as routine HIT antibody testing, may prevent a fatal course in ECMO-supported COVID-19 patients.
Background Sepsis is characterized by a pro-inflammatory and pro-coagulatory shift which can induce life-threatening complications. Close monitoring and risk stratification of sepsis patients is crucial for proper treatment and consequently patient outcome. Therefore, this study focuses on the response patterns of inflammatory and coagulatory parameters used in clinical routines to estimate the course of sepsis. Methods A total of 1,110 patients diagnosed with sepsis were retrospectively analyzed to identify response patterns for risk stratification of routine parameters measured at the peak level of C-reactive protein. Cluster analysis was used and the differences in the patient characteristics and 28-day survival were assessed. Cox proportional hazards regression model for survival stratified by the clusters was performed. Results The analyses revealed the parameters to have five distinct response patterns. These clusters reflect the etiology as well as the course of sepsis associated with different mortalities. Here, impairment of the liver plays a crucial role in the ability to appropriately respond to sepsis. Of the routinely measured parameters, C-reactive protein and antithrombin seem to be unspecific for stratification of septic patients. Adjusted for the individual clusters, survival was associated with an increase in fibrinogen (p = 0.0042), platelets (p = 0.0003) and PT (p = 0.001) as well as a decrease in leukocytes (p = 0.034). Conclusions This study reveals that patients have distinct response patterns of inflammatory and coagulatory parameters depending on disease etiology. These patterns are associated with different mortalities although the patients have similar levels of C-reactive protein. Independently of the type of response, good coagulatory capacity seems to be crucial for patient survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.