Previously [Histochem J 1997;29:279–286], we found that sympathectomy induced neointima formation in ear but not cerebral arteries of genetically hyperlipidemic rabbits. To clarify the influence of sympathetic nerves in atherosclerosis, and whether their influence involves vascular NO activity, we studied groups of normocholesterolemic intact (NI) and sympathectomized (NS), and hypercholesterolemic intact (HI) and sympathectomized (HS) rabbits (diet/6-hydroxydopamine for 79 days). Segments of basilar (BA) and femoral (FA) arteries were studied histochemically, to evaluate differentiation (anti-desmin, anti-vimentin, anti-h-caldesmon, and nuclear dye), by confocal microscopy, and by in vitro myography. In BAs, staining of NI and NS groups was similar. In hypercholesterolemic groups, a small neointima developed, more frequently in HS segments where smooth muscle cells (SMCs) positive for all antibodies appeared to be migrating into the neointima. In FAs, SMCs stained for the three antibodies in the NI group, but we observed desmin- and h-caldesmon-negative, vimentin-positive cells in some external medial layers of the NS, HI and HS groups, identical to adventitial fibroblasts. Large neointimas of the HS group contained vimentin-positive and largely desmin- and h-caldesmon-negative cells. Relaxation of BA or FA segments to acetylcholine was not decreased by sympathectomy. Sympathectomy increased the contraction of resting FAs to nitro-L-arginine (p = 0.0379). Thus, sympathectomy aggravates the tendency for FA SMCs to migrate and dedifferentiate, increasing atherosclerotic lesions, without decreasing NO activity, but has only minor effects on BAs.
We examined the effects of acute hyperglycemia on the function of rabbit cerebral arteries in vitro. It was hypothesized that increased formation of reactive oxygen species (ROS) could occur, which could explain how hyperglycemia aggravates certain pathologic situations such as cerebral ischemia. Three-millimeter basilar artery segments were incubated in either normoglycemic (NG, 5.5 mM D-glucose) or hyperglycemic (HG, 25 mM D-glucose) solution containing 3.10(-6) M indomethacin. After 90 minutes equilibration, a test (=T1) of relaxation to acetylcholine (Ach) at three concentrations was performed on histamine-precontracted segments. Three further identical tests were performed (T2-T4), after 30-minute rest periods. Ach responses in NG solution were stable, whereas those in HG solution, although greater at T1, fell progressively from one test to the next (P < 0.0001 versus NG), whereas nitroprusside responses did not change. In separate experiments, this time-dependent fall in Ach responses was significantly prevented by superoxide dismutase (SOD) plus catalase (P = 0.0003), but not by SOD alone. It was also significantly prevented by the NAD(P)H oxidase inhibitors diphenyleneiodonium (P = 0.020) and apocynin (P = 0.0179), but not by allopurinol (xanthine oxidase inhibitor). Control experiments with l-glucose ruled out a hyperosmotic or non-specific glucose effect. We conclude that, in HG solution in vitro, rapidly increasing ROS production largely derived from NAD(P)H oxidase reduced relaxation to acetylcholine. The rapidity of this effect suggests that the function of these arteries may be affected during brief periods of hyperglycemia in vivo.
ABSTRACT-The modes of action of serotonin (5-HT) on the tone of the rabbit basilar artery were investigated in vitro with the aim of determining the exact role of the endothelium. After sacrificing the animal under pentobarbital anesthesia, 3-mm segments of the artery were removed and mounted in a 5-ml myograph for isometric tension recording. Vessels precontracted by histamine were relaxed by acetylcholine. Mean maximum relaxation at 10 -4 M was reduced from 79% to 22% (P<0.001) by 10, and from 73% to 63% (NS) by 3.10 -6 M indomethacin. Intact non-precontracted vessels were contracted by 5-HT (10 -9 M to 10 -5 M): 10 -5 M L-NA significantly increased the contractile force (approximately twofold), whereas 3.10 -6 M indomethacin significantly decreased it (to approximately 35%). In histamineprecontracted vessels, 5-HT induced at low concentrations (3.10 -9 M to 3.10 -8 M) a reduction in tone and induced an increase in tone at higher concentrations. At 10 -5 M, L-NA abolished the relaxant phase of the response, whereas 3.10 -6 M indomethacin potentiated it. In uridine triphosphate-precontracted segments, there was not a net reduction in tone under 5-HT at 3.10 -9 to 3.10 -8 M, but further contraction appeared at higher concentrations. The presence of 10 -5 M L-NA significantly increased the contraction to 5-HT, but 3.10 -6 M indomethacin did not significantly reduce it. Endothelial lesion reduced by about 50% the contractile response of L-NA-treated arteries to 5-HT; and conversely, endothelial lesion increased approximately twofold the contraction of indomethacin-treated arteries to 5-HT. We conclude that 5-HT causes the release from the endothelium of two vasoactive factors, one of which is probably the vasodilator nitric oxide, but the size of the relaxation may depend on the prevailing level of nitric oxide synthase activation. The second factor is a cyclooxygenase-dependent contractile agent. However, the contraction to 5-HT was not modified by the presence of the thromboxane synthase inhibitor CGS 13080 (10 -4 M), suggesting that thromboxane A2 is not the main contractile agent released.
Our objective was to determine whether subarachnoid haemorrhage modifies cerebral artery smooth muscle cell phenotype and the contractile protein alpha-actin measured 7 days after haemorrhage. We used a rabbit subarachnoid haemorrhage model and immunofluorescence labelling of alpha-smooth muscle actin, vimentin and desmin. The paired comparison between the haemorrhage and sham rabbits was performed using confocal laser-scanning microscopy. We found in the haemorrhage group significantly less intense alpha-actin immunostaining (p = 0.036) and more intense vimentin immunostaining (p = 0.043) but no significant change in the intensity of desmin staining. Our results indicate an absolute decrease after subarachnoid haemorrhage in the amount of functional alpha-actin and in the light of the literature may suggest a certain degree of dedifferentiation of smooth muscle cells in the cerebral artery wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.