CCE proved to be technically feasible and safe. Acceptable sensitivity and moderate specificity levels in polyp detection were recorded. Bowel preparation was adequate in most patients. Because extracolonic pathologies were effectively visualized, new indications for the PillCam Colon 2 may be defined.
Multiple myeloma (MM) is a hematological cancer with underlying causes associated with increased oxidative stress. Through signaling of their receptor RAGE, advanced glycation endproducts (AGEs) are known to increase oxidative stress associated with malignant transformation. In the present study, we have demonstrated that the levels of these compounds are increased in the saliva of myeloma patients with bone lesions. This data may provide a potential marker for bone lesions in MM and a potential target for the treatment of myeloma by blocking the AGEs or their receptor.
Glucose-stimulated insulin secretion (GSIS) is the gold standard for β-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.