The African elephant (Loxodonta africana) is listed as vulnerable, with wild populations threatened by habitat loss and poaching. Clinical pathology is used to detect and monitor disease and injury, however existing reference interval (RI) studies for this species have been performed with outdated analytical methods, small sample sizes or using only managed animals. The aim of this study was to generate hematology and clinical chemistry RIs, using samples from the free-ranging elephant population in the Kruger National Park, South Africa. Hematology RIs were derived from EDTA whole blood samples automatically analyzed (n = 23); manual PCV measured from 48 samples; and differential cell count results (n = 51) were included. Clinical chemistry RIs were generated from the results of automated analyzers on stored serum samples (n = 50). Reference intervals were generated according to American Society for Veterinary Clinical Pathology guidelines with a strict exclusion of outliers. Hematology RIs were: PCV 34–49%, RBC 2.80–3.96 × 1012/L, HGB 116–163 g/L, MCV 112–134 fL, MCH 35.5–45.2 pg, MCHC 314–364 g/L, PLT 182–386 × 109/L, WBC 7.5–15.2 × 109/L, segmented heterophils 1.5–4.0 × 109/L, band heterophils 0.0–0.2 × 109/L, total monocytes 3.6–7.6 × 109/L (means for “regular” were 35.2%, bilobed 8.6%, round 3.9% of total leukocytes), lymphocytes 1.1–5.5 × 109/L, eosinophils 0.0–0.9 × 109/L, basophils 0.0–0.1 × 109/L. Clinical chemistry RIs were: albumin 41–55 g/L, ALP 30–122 U/L, AST 9–34 U/L, calcium 2.56–3.02 mmol/L, CK 85–322 U/L, GGT 7–16 U/L, globulin 30–59 g/L, magnesium 1.15–1.70 mmol/L, phosphorus 1.28–2.31 mmol/L, total protein 77–109 g/L, urea 1.2–4.6 mmol/L. Reference intervals were narrower than those reported in other studies. These RI will be helpful in the future management of injured or diseased elephants in national parks and zoological settings.
Introduction Acute phase reactants (APRs) have not been investigated in free‐living African elephants (Loxodonta africana), and there is little information about negative APRs albumin and serum iron in elephants. Objectives We aimed to generate reference intervals (RIs) for APRs for free‐living African elephants, and to determine the diagnostic performance of APRs in apparently healthy elephants and elephants with inflammatory lesions. Methods Stored serum samples from 49 apparently healthy and 16 injured free‐living elephants were used. The following APRs and methods were included: albumin, bromocresol green; haptoglobin, colorimetric assay; serum amyloid A (SAA), multispecies immunoturbidometric assay, and serum iron with ferrozine method. Reference intervals were generated using the nonparametric method. Indices of diagnostic accuracy were determined by receiver‐operator characteristic (ROC) curve analysis. Results Reference intervals were: albumin 41–55 g/L, haptoglobin 0.16–3.51 g/L, SAA < 10 mg/L, and serum iron 8.60–16.99 μmol/L. Serum iron and albumin concentrations were lower and haptoglobin and SAA concentrations were higher in the injured group. Serum iron had the best ability to predict health or inflammation, followed by haptoglobin, SAA, and albumin, with the area under the ROC curve ranging from 0.88–0.93. Conclusions SAA concentrations were lower in healthy African vs Asian elephants, and species‐specific RIs should be used. Serum iron was determined to be a diagnostically useful negative APR which should be added to APR panels for elephants.
Meningiomas are the most common primary brain tumour in dogs and cats. However, whilst there are numerous reports of extracranial (spinal, orbital and sinonasal) meningiomas in the dog, there have only been a few case reports of spinal meningiomas, and no post-mortem confirmed orbital or sinonasal meningiomas in cats. In this report, a 20-year-old captive tiger (Panthera tigris altaica) with a history of chronic ocular inflammation resulting in enucleation, spontaneously developed tetanic convulsions (epileptic seizures) that over a 2-year period resulted in a gradually worsening condition and the animal was eventually euthanized. At autopsy, a focal, expansile, neoplastic mass was found in the caudal nasal cavity midline, abutting the cribriform plate and slightly compressing the calvarium. Histological analysis revealed nasal turbinates attached to a well-circumscribed expansile multi-lobular mass consisting of interlacing whorls and streams of neoplastic cells supported by a variably fibrous to microcystic collagenous matrix displaying rare psammoma bodies. The diagnosis was sinonasal transitional meningioma. This is the first report of a captive wild felid with an extracranial meningioma, specifically a tiger with a sinonasal transitional meningioma.
Background This study determined plasma protein electrophoresis (PPE) reference intervals in two elasmobranch species: the undulate skate (Raja undulata) and the nursehound shark (Scyliorhinus stellaris), using a reference population of 48 undulate skates (27 males, 21 females) and 62 nursehounds (32 males, 30 females), considered to be clinically healthy. Plasma samples were analyzed using capillary zone electrophoresis (CZE). Results The undulate skate electrophoretogram resembled those previously reported in other batoids and could be divided into seven consistent fractions. No statistically significant differences were detected between sexes and developmental stages. The nursehound electrophoretogram was similar to that previously described in other shark species and could be divided into eight consistent fractions. Fraction 5% was significantly higher in juvenile nursehounds when compared to adults, while fraction 6 concentration and percentage were significantly higher in adults. Fraction 4% was higher in males than in females. Albumin band was not detected, and pre-albumin was negligible in both studied species. Alpha-globulins were predominant in the undulate skate, while beta-globulins were predominant in nursehounds. Statistically significant differences were found in all electrophoretogram fraction percentages and concentrations between the two species. Conclusion To the authors knowledge, this is the first study reporting PPE values in undulate skates and nursehounds, and the first study using CZE in elasmobranch plasma. These findings can serve as a primary reference for health monitoring in both species and will add to the limited data available on PPE in elasmobranchs.
Studies determining baseline hematological reference intervals (RI) in elasmobranchs are very limited. In this study, blood samples were collected from 94 clinically healthy Nursehound Shark (Scyliorhinus stellaris) maintained under human care. Median (RI) in major leukocyte types were similar to other Carcharhinid sharks as lymphocytes were the predominant leukocyte with 38.0 (28.2–53.5)%, followed by coarse eosinophilic granulocytes with 20.0 (12.2–31.7)%, fine eosinophilic granulocytes with 6.0 (1.2–12.8) %, monocytes with 2.0 (0.0–6.0)%, and neutrophils with 2.0 (0.0–6.0)%. Nursehound Shark produced granulated thrombocytes, which were classified as granulocytes and represented 28.5 (12.4–39.7)% of all leukocytes. Median (RI) manual red blood cell and white blood cell counts were 177.50 (132.50–210.00) x 109 cells/l and 8.26 (5.24–14.23) x 109 cells/l, respectively. Median (RI) plasma chemistry values showed alkaline phosphatase 7.7 (4.2–13.0) U/l, aspartate aminotransferase 7.6 (3.3–17.1) U/l, blood urea nitrogen 281.6 (261.2–305.0) mmol/l, calcium 3.97 (3.59–4.47) mmol/l, total cholesterol 2.04 (1.02–3.91) mmol/l, chloride 233.0 (215.2–259.0) mmol/l, iron 3.79 (1.74–6.93) μmol/l, glucose 0.87 (0.47–1.44 mmol/l), potassium 3.8 (2.9–4.6) mmol/l, sodium 243.0 (227.7–271.0) mmol/l, phosphorus 1.58 (1.13–2.10) mmol/l, total protein 24.0 (20.0–35.0) g/l, and triglycerides 0.97 (0.49–3.35) mmol/l. Creatine kinase, gamma glutamyl transferase, and lactate dehydrogenase levels were below the instrument reading range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.