Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Single-use technologies (SUTs) are widely used during biopharmaceutical manufacture as disposable bioreactors or media and buffer storage bags. Despite their advantages, the risk of release of extractable and leachable (E&Ls) substances is considered an important drawback in adopting disposables in the biomanufacturing process. E&Ls may detrimentally affect cell viability or productivity or may persist during purification and present a risk to the patient if remaining in the final drug product. In this study, 34 plastic films from single-use bags (SUBs) for cell cultivation were extracted with selected solvents that represent reasonable worst-case conditions for most typical biomanufacturing applications. SUBs were incubated at small-scale under accelerated-aging conditions that represented standard operational conditions of use. Leachables analysis was performed following dispersive liquid-liquid microextraction (DLLME) for analyte preconcentration and removal of matrix interference. Resulting extracts were characterized by GC-headspace for volatiles, high resolution GC-Orbitrap-MS/MS for semivolatiles, high resolution LC-Orbitrap-MS/MS for nonvolatiles, and ICP-MS for trace elemental analysis. Multivariate statistical analysis of the analytical data revealed significant correlations between the type and concentration of compounds and bags features including brand, manufacturing date and polymer type. The analytical data demonstrates that, over recent years, the nature of E&Ls has been altered due to the implementation of manufacturing changes and new types of polymers and may change further with the future advent of regulations that will limit or ban the use of certain raw materials and additives. The broad E&L database generated herein facilitates toxicological assessments from a biomanufacturing standpoint and provides practical guidelines for confident determination of E&Ls to enable screening and elimination of nonsatisfactory films for single use bioprocessing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.