Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic system. In this experimental model of Down Syndrome a selective activation of β1-ADR does restore some of these behavioral deficits. Further mechanistic studies will be needed to investigate the failure of noradrenergic system and the role of β1-ADR in cognitive deficit and pathogenesis of DS in people. Restoring NE neurotransmission or a selective activation of β1-ADR need to be further investigated for development of any potential therapeutic strategies for symptomatic relieve of memory deficit in DS. Furthermore, due to the significant involvement of noradrenergic system in the cardiovascular function further safety and translational studies will be needed to ensure the safety and efficacy of this approach.
The tumor microenvironment (TME) often contains high levels of suppressive myeloid cells that may contribute to innate checkpoint inhibitor (CPI) resistance. Pionyr's Myeloid Tuning approach involves altering the composition and/or the function of myeloid cells in the TME. To this end, therapeutic targeting of tumor-associated macrophages (TAMs) is a promising strategy to increase CPI response rates in solid tumor indications, as well as to overcome resistance to CPI therapies. Pionyr and others identified the transmembrane protein triggering receptor expressed on myeloid cells-2 (TREM2) as a highly enriched TAMs target. Furthermore, TREM2 mRNA expression negatively correlates with patient survival in a variety of tumor types, supporting the involvement of TAMs in tumor progression. Pionyr developed a lead anti-TREM2 monoclonal antibody (mAb), termed PY314, as well as a murinized version of PY314, termed PY314m. PY314m demonstrated significant anti-tumor activity either as single agent in CPI-sensitive syngeneic tumor models or in combination with anti-PD-1 in CPI-resistant syngeneic tumor models. Mechanistically, PY314m reduced the pro-tumorigenic MHC class II-low, M2-like TAMs, induced pro-inflammatory cytokine production, significant increased CD8+ T cell infiltration into the TME. These findings suggest that PY314 therapy could be used to overcome CPI resistance in humans. To select patients most likely to benefit from PY314 therapy, Pionyr developed a qualitative IHC assay that detects TREM2 expression levels in formalin-fixed, paraffin-embedded human tumor tissues. Screening for TREM2 expression in tumor tissues demonstrated that TREM2+ TAMs were present in multiple solid tumor indications and their number increased with disease grade in a selected set of indications. Ongoing efforts are aimed at better understanding localization of TREM2+ TAMs within the TME, and spatial relationship of the TREM2+ TAMs to other immune cells present in the TME. The TREM2 IHC assay will be used to test our hypothesis that patients with tumors with high level of TREM2+ TAMs are most likely to benefit from PY314 treatment. Citation Format: Nadine S. Jahchan, Mikhail Binnewies, Joshua L. Pollack, Ranna Mehta, Subhadra Dash, Christine Tun, Erick Lu, Xiaoyan Du, Kevin P. Baker, Len Reyno, Venkataraman Sriram. Tuning the tumor myeloid microenvironment (TME) by targeting TREM2+ tumor-associated macrophages to overcome resistance to immune checkpoint inhibitors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB071.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.