Viral contamination is a common risk to continuous cell line-derived biologics. Viral validation is thus required for license applications. Viral validation for chromatography procedures is routinely performed by spiking a model virus into the load material and performing the chromatography procedures at small scale under conditions equivalent to the commercial scale. With traditional cell-based infectivity assays, one can only spike one model virus at one time. Quantitative PCR methods (TaqMan) make it possible to spike multiple model viruses for a chromatography procedure simultaneously. TaqMan assays can quantify multiple types of viruses and other types of nucleic acid in a single sample without cross interference because of its extremely high specificity. Therefore, a multivirus spike approach was evaluated and compared to a single virus spike approach. The study was further extended to the evaluation of host cell DNA clearance. The data shows highly comparable viral and host cell DNA clearance between the single and multiple virus spike approaches. Application of a multivirus spike approach provides significant time, manpower, and cost savings for new drug development.
Commercial bioreactors employing mammalian cell cultures to express biological or pharmaceutical products can become contaminated with adventitious viruses. The high expense of such a contamination can be reduced by passing all gases and fluids feeding the bioreactor through virus inactivation or removal steps, which act as viral barriers around the bioreactor. A novel virus barrier filter has been developed for removing viruses from serum-free cell culture media. This filter removes the 20 nm minute virus of mice by >3 log reduction value (LRV), the 28 nm bacteriophage PhiX174 by >4.5 LRV, the mycoplasma Acholeplasma laidlawii by > or =8.8 LRV, and the bacteria Brevundimonas diminuta by > or =9.2 LRV. Robust removal occurs primarily by size exclusion as demonstrated over a wide range of feedstocks and operating conditions. The filtered media are indistinguishable from unfiltered media in growth of cells to high densities, maintenance of cell viability, and productivity in expressing protein product. Insulin and transferrin show high passage through the filter. The virus barrier filter can be autoclaved. The relatively high membrane permeability enables the use of a moderate filtration area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.