Using PCR mutagenesis to disrupt the NXT/S N-linked glycosylation motif of the Env protein, we created 27 mutants lacking 1 to 5 of 14 N-linked glycosylation sites within regions of gp120 lying outside of variable loops 1 to 4 within simian immunodeficiency virus strain 239 (SIV239). Of 18 mutants missing N-linked glycosylation sites predicted to lie within 10 Å of CD4 contact sites, the infectivity of 12 was sufficient to measure sensitivity to neutralization by soluble CD4 (sCD4), pooled immune sera from SIV239-infected rhesus macaques, and monoclonal antibodies known to neutralize certain derivatives of SIV239. Three of these 12 mutants (g3, lacking the 3rd glycan at position 79; g11, lacking the 11th glycan at position 212; and g3,11, lacking both the 3rd and 11th glycans) were approximately five times more sensitive to neutralization by sCD4 than wild-type (WT) SIV239. However, these same mutants were no more sensitive to neutralization than WT by pooled immune sera. The other 9 of 12 replication-competent mutants in this group were no more sensitive to neutralization than the WT by any of the neutralizing reagents. Six of the nine mutants that did not replicate appreciably had three or more glycosylation sites eliminated; the other three replication-deficient strains involved mutation of site 15. Our results suggest that elimination of glycan attachment sites 3 and 11 enhanced the exposure of contact residues for CD4. Thus, glycans at positions 3 and 11 of SIV239 gp120 may be particularly important for shielding the CD4-binding site from antibody recognition.
Short, unique, in-frame deletions were consistently detected within p6gag sequences obtained over time from three of eight HIV-1-infected long-term nonprogressors (Alexander, L., Weiskopf, E., Greenough, T.C., Gaddis, N.C., Auerbach, M.R., Malim, M.H., O'Brien, S.J., Walker, B.D., Sullivan, J.L., Desrosiers, R.C., 2000. Unusual polymorphisms in Human Immunodeficiency Virus Type 1 associated with nonprogressive infection. J. Virol. 74, 4361-4376). Using PCR mutagenesis, we created 11 mutant forms of SIV239 and 8 mutant forms of HIV-1 NL4-3 with serial 2 amino acid deletions within p6gag downstream of the PTAP late domain. Nine of the 11 SIV239 mutants assembled and released virion particles similar to wild-type, displayed wild-type infectivity, and replicated similar to wild-type SIV239 in cultured cells. Two of the 11 SIV239 mutants, both involving D at position 21, were grossly defective for intracellular gag accumulation and did not replicate detectably in cultured cells. Similar to the 9 SIV239 mutants, 7 of the 8 HIV-1 mutants replicated well in cultured cells. Only the mutant deleted of ES at positions 19 and 20, immediately adjacent to the PTAP sequence, was markedly impaired in its replicative capacity. These results demonstrate an overall high tolerance of SIV and HIV to two amino acid deletions within p6gag downstream of the late domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.