Stanniocalcin (STC) is an anti-hypercalcemic glycoprotein hormone previously identified in the corpuscles of Stannius in bony fish and recently in the human genome. This study undertook to express human STC in Chinese hamster ovary (CHO) cells and to determine its effects on calcium and phosphate absorption in swine and rat intestine. Unidirectional mucosal-to-serosal ( J m→s) and serosal-to-mucosal ( J s→m)45Ca and32P fluxes were measured in vitro in duodenal tissue in voltage-clamped Ussing chambers. Addition of STC (10–100 ng/ml) to the serosal surface of the duodenum resulted in a simultaneous increase in calcium J m→s and J s→mfluxes, with a subsequent reduction in net calcium absorption. This was coupled with an STC-stimulated increase in phosphate absorption. Intestinal conductance was increased at the highest dose of STC (100 ng/ml) in swine tissue. The addition of STC to the mucosal surface had no effect on calcium and phosphate fluxes. STC at doses of 10–1,000 ng/ml had no effect on short-circuit current in any region of the rat intestine. In conclusion, human recombinant STC decreases the absorption of calcium and stimulates the absorption of phosphate in both swine and rat duodenum. STC is a novel regulatory protein that regulates mammalian intestinal calcium and phosphate transport.
In the intestine, epithelial cells continually produce and secrete low levels of nitric oxide (NO). Salmonella sp. invade epithelium by responding to environmental stimuli. The aims of this study were to determine the effect of reactive nitrogen intermediates (RNIs) on S. dublin and S. typhimurium growth and invasion of T84 epithelial monolayers. Intracellular NO formation was inhibited by 7-nitroindazole (7-NI) or N(G)-monomethyl-L-arginine, monoacetate (L-NMMA); extracellular NO and peroxynitrite were scavenged with ferro-hemoglobin or urate. The effect of authentic peroxynitrite (ONOO-); 3-morpholino-sydnonimine (SIN-1), which releases ONOO- via NO and superoxide; spermine NONOate, which releases only NO; or superoxide generated by xanthine oxidase and pterin on S. dublin and S. typhimurium growth and invasion were examined. Inhibition of NO synthesis and scavenging of extracellular NO or peroxynitrite reduced S. dublin invasion into T84 monolayers and enhanced bacterial growth. Pre-exposure of S. dublin to ONOO- and SIN-1 increased subsequent bacterial invasion into T84 monolayers. Conversely, exposure of bacteria to spermine NONOate or superoxide did not affect S. dublin invasion. In contrast, S. typhimurium invasion was not affected by pre-treatment with NO donors. In conclusion, exposure of S. dublin to ONOO- enhances the ability of the bacteria to invade epithelial cells. These results suggest that luminal ONOO- may have a novel role as an extracellular signal between invasive bacteria and epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.