Protein expression profiling has been increasingly used to discover and characterize biomarkers that can be used for diagnostic, prognostic or therapeutic purposes. Most proteomic studies published to date have identified relatively abundant host response proteins as candidate biomarkers, which are often dismissed because of an apparent lack of specificity. We demonstrate that 2 host response proteins previously identified as candidate markers for early stage ovarian cancer, transthyretin and inter-alpha trypsin inhibitor heavy chain 4 (ITIH4), are posttranslationally modified. These modifications include proteolytic truncation, cysteinylation and glutathionylation. Assays using Surface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS) may provide a means to confer specificity to these proteins because of their ability to detect and quantitate multiple posttranslationally modified forms of these proteins in a single assay. Quantitative measurements of these modifications using chromatographic and antibody-based ProteinChip1 array assays reveal that these posttranslational modifications occur to different extents in different cancers and that multivariate analysis permits the derivation of algorithms to improve the classification of these cancers. We have termed this process host response protein amplification cascade (HRPAC), since the process of synthesis, posttranslational modification and metabolism of host response proteins amplifies the signal of potentially low-abundant biologically active disease markers such as enzymes. ' 2005 Wiley-Liss, Inc.
Background: Detection of hepatocellular carcinoma (HCC) in patients with chronic liver disease (CLD) is difficult. We investigated the use of comprehensive proteomic profiling of sera to differentiate HCC from CLD. Methods: Proteomes in sera from 20 CLD patients with ␣-fetoprotein (AFP) <500 g/L (control group) and 38 HCC patients (disease group) were profiled by anionexchange fractionation (first dimension), two types (IMAC3 copper and WCX2) of ProteinChip ® Arrays (second dimension), and time-of-flight mass spectrometry (third dimension). Bioinformatic tests were used to identify tumor-specific proteomic features and to estimate the values of the tumor-specific proteomic features in the diagnosis of HCC. Cross-validation was performed, and we also validated the models with pooled sera from the control and disease groups, serum from a CLD patient with AFP >500 g/L, and postoperative sera from two HCC patients. Results: Among 2384 common serum proteomic features, 250 were significantly different between the HCC and CLD cases. Two-way hierarchical clustering differentiated HCC and CLD cases. Most HCC cases with advanced disease were clustered together and formed
Purpose: Nasopharyngeal cancer (NPC) is a common cancer in Hong Kong, and relapse can occur frequently. Using protein chip profiling analysis, we aimed to identify serum biomarkers that were useful in the diagnosis of relapse in NPC.Experimental Design: Profiling analysis was performed on 704 sera collected from 42 NPC patients, 39 lung cancer patients, 30 patients with the benign metabolic disorder thyrotoxicosis (TX), and 35 normal individuals (NM). Protein profile in each NPC patient during clinical follow up was correlated with the relapse status.Results: Profiling analysis identified two biomarkers with molecular masses of 11.6 and 11.8 kDa, which were significantly elevated in 22 of 31 (71%) and 21 of 31 (68%) NPC patients, respectively, at the time of relapse (RP) as compared with 11 patients in complete remission (CR; RP versus CR, P ؍ 0.009), 30 TX (RP versus TX, P < 0.001), or 35 NM (RP versus NM, P < 0.001). The markers were also elevated in 16 of 39 (41%) lung cancer patients at initial diagnosis. By tryptic digestion, followed by tandem mass spectrometry fragmentation, the markers were identified as two isoforms of serum amyloid A (SAA) protein. Monitoring the patients longitudinally for SAA level both by protein chip and immunoassay showed a dramatic SAA increase, which correlated with relapse and a drastic fall correlated with response to salvage chemotherapy. Serum SAA findings were compared with those of serum Epstein-Barr virus DNA in three relapsed patients showing a similar correlation with relapse and chemo-response.Conclusions: SAA could be a useful biomarker to monitor relapse of NPC.
Background: Although overall 5-year survival rates for ovarian cancer are poor (10-30%), stage I/IIa patients have a 95% 5-year survival. New biomarkers that improve the diagnostic performance of existing tumor markers are critically needed. A previous study by Zhang et al. reported identification and validation of three biomarkers using proteomic profiling that together improved early-stage ovarian cancer detection. Methods: To evaluate these markers in an independent study population, postdiagnostic/pretreatment serum samples were collected from women hospitalized at the Mayo Clinic from 1980 to 1989 as part of the National Cancer Institute Immunodiagnostic Serum Bank. Sera from 42 women with ovarian cancer, 65 with benign tumors, and 76 with digestive diseases were included in this study. Levels of various posttranslationally forms of transthyretin and apolipoprotein A1 were measured in addition to CA125.
Objective The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Methods Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. Results In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P= 0.015, McNemar's test). Conclusion Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.