Exorphins, peptides with opioid activity, have previously been isolated from pepsin hydrolysates of alpha-casein [Zioudrou, C., Streaty, R. A., & Klee, W. A. (1979) J. Biol. Chem. 254, 2446-2449]. Analysis of these peptides shows that they correspond to the sequences 90-96, Arg-Tyr-Leu-Gly-Tyr-Leu-Glu, and 90-95, Arg-Tyr-Leu-Gly-Tyr-Leu, of alpha-casein. These peptides, as well as two of their analogues Tyr-Leu-Gly-Tyr-Leu-Glu (91-96) and Tyr-Leu-Gly-Tyr-Leu (91-95), have now been synthesized and characterized. Their opioid activity was examined by three different bioassays: (a) displacement of D-2-alanyl[tyrosyl-3,5-3H]enkephalin-(5-L-methioninamide) and [3H]dihydromorphine from rat brain membranes; (b) naloxone-reversible inhibition of adenylate cyclase in homogenates of neuroblastoma x glioma hybrid cells; (c) naloxone-reversible inhibition of electrically stimulated contractions of the mouse vas deferens. The synthetic peptide of sequence 90-96 was the most potent opioid in all three bioassays and its potency was similar to that of the isolated alpha-casein exorphins. The synthetic peptides were totally resistant to hydrolysis by trypsin and homogenates of rat brain membranes, but were partially inactivated by chymotrypsin and subtilisin. The difference in opioid activity of alpha-casein exorphins may be related to differences in conformational flexibility observed by NMR spectroscopy.
Tetramethylharnstoff (I) wird über das Iminiumsalz (III) mit Hydroxybenzotriazol (IV) zum O‐Benzotri‐ azolyl‐tetramethyluronium‐hexafluorophosphat (V) umgesetzt.
A cDNA encoding the rat mu-opioid receptor was expressed stably in a Rat-1 fibroblast cell line. Expression of this receptor was demonstrated with specific binding of the mu-opioid selective ligand [3H][D-Ala2,N-MePhe4,Gly5-ol]-enkephalin ([3H]DAMGO). In membranes of clone mu11 cells DAMGO produced a robust, concentration-dependent stimulation of basal high affinity GTPase activity. Cholera toxin-catalyzed [32P]ADP-ribosylation in membranes of this clone labelled a 40 kDa Gi family polypeptide(s) that was markedly enhanced by the addition of DAMGO. Antisera against Gi2alpha and Gi3alpha were both able to immunoprecipitate a [32P]-radiolabelled 40 kDa polypeptide(s) from DAMGO and cholera-toxin treated membranes of clone mu11, indicating that the mu-opioid receptor was able to interact effectively with both Gi2 and Gi3 in Rat-1 fibroblasts. A series of peptides derived from the delta-opioid receptor sequence were assessed for their ability to modify agonist-stimulated G protein activation and [3H] agonist binding to the receptor. In membranes from the clone mu11, specific binding of [3H]DAMGO was reduced by peptides corresponding to the NH2-terminal region of the third intracellular loop (i3.1) and the carboxyl-terminal tail (i4) of this receptor. Agonist stimulated GTPase activity and DAMGO dependent cholera toxin-catalyzed [32P]ADP-ribosylation were inhibited by peptides derived from the proximal (i3.1) and the distal portion (i3.3) of the third intracellular loop. Peptide i3.1 also inhibited DAMGO-stimulated [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTP-gammaS) binding in the same membranes. In contrast, peptides derived from the second intracellular loop were without any effect.
Solubilization of opioid receptors from rat cortical membranes that retained high-affinity guanine nucleotide-sensitive agonist binding was achieved using 10 mM CHAPS. We report the nature of the interactions of mu and delta opioid receptors with the guanine nucleotide-binding protein G(o) by immunoprecipitation of CHAPS extracts with selective G(o)alpha-subunit protein antisera. Antiserum IM1 raised against amino acids 22-35 of G(o)alpha selectively co-immunoprecipitated G(o)alpha-mu and G(o)alpha-delta opioid receptor complexes detected in the immunoprecipitates by specific [3H][D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin and [3H][D-Ser2,Leu5,Thr6]enkephalin binding respectively. By contrast, antisera directed against the C-terminal decapeptide (OC2) and the N-terminal hexadecapeptide (ON1) of isoforms of G(o)alpha were unable to immunoprecipitate solubilized opioid receptor-G(o) complexes, although both were able to immunoprecipitate solubilized G(o)alpha and have been shown to reduce the affinity of [D-Ala2,D-Leu5]enkephalin for opioid receptors in rat cortical membranes [Georgoussi, Carr and Milligan (1993) Mol. Pharmacol. 44, 62-69]. These findings demonstrate that CHAPS-solubilized mu and delta opioid receptors from rat cortical membranes form stable complexes with one or more variants of G(o).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.